Description Usage Arguments Details Value Author(s) See Also Examples
Compute regression parameter of conditional linear model of separable tensor normal distribution described in Lyu et al. (2019).
1  | signal(Omega.list, i = 1, k = 1)
 | 
Omega.list | 
 list of precision matrices of tensor, i.e.,   | 
i | 
 index of interested regression parameter, default is 1. See details in Lyu et al. (2019).  | 
k | 
 index of interested mode, default is 1.  | 
This function computes regression parameter and is fundamental for sample covariance of residuals and bias correction. See details in Lyu et al. (2019).
A vector of regression paramter.
Xiang Lyu, Will Wei Sun, Zhaoran Wang, Han Liu, Jian Yang, Guang Cheng.
1 2 3 4 5 6 7 8 9 10 11 12  | m.vec = c(5,5,5)  # dimensionality of a tensor 
n = 5   # sample size 
k=1 # index of interested mode
lambda.thm = 20*c( sqrt(log(m.vec[1])/(n*prod(m.vec))), 
                   sqrt(log(m.vec[2])/(n*prod(m.vec))), 
                   sqrt(log(m.vec[3])/(n*prod(m.vec))))
DATA=Trnorm(n,m.vec,type='Chain') 
# obersavations from tensor normal distribution
out.tlasso = Tlasso.fit(DATA,T=1,lambda.vec = lambda.thm)   
# output is a list of estimation of precision matrices
signal(out.tlasso, i=2 , k=k )
# the regression parameter for conditional linear model of 2rd row in 1st mode
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.