| canocov | R Documentation | 
Function canocov performs a canonical correlation analysis. It
operates on raw data matrices, which are only centered in the
program. It uses generalized inverses and can deal with structurally
singular covariance matrices.
canocov(X, Y)
X | 
 The n times p X matrix of observations  | 
Y | 
 The n times q Y matrix of observations  | 
canocov computes the solution by a singular value 
decomposition of the transformed between set covariance matrix.
Returns a list with the following results
ccor | 
 the canonical correlations  | 
A | 
 canonical weights of the X variables  | 
B | 
 canonical weights of the Y variables  | 
U | 
 canonical X variates  | 
V | 
 canonical Y variates  | 
Fs | 
 biplot markers for X variables (standard coordinates)  | 
Gs | 
 biplot markers for Y variables (standard coordinates)  | 
Fp | 
 biplot markers for X variables (principal coordinates)  | 
Gp | 
 biplot markers for Y variables (principal coordinates)  | 
Rxu | 
 canonical loadings, (correlations X variables, canonical X variates)  | 
Rxv | 
 canonical loadings, (correlations X variables, canonical Y variates)  | 
Ryu | 
 canonical loadings, (correlations Y variables, canonical X variates)  | 
Ryv | 
 canonical loadings, (correlations Y variables, canonical Y variates)  | 
Sxu | 
 covariance X variables, canonical X variates  | 
Sxv | 
 covariance X variables, canonical Y variates  | 
Syu | 
 covariance Y variables, canonical X variates  | 
Syv | 
 covariance Y variables, canonical Y variates  | 
fitRxy | 
 goodness of fit of the between-set correlation matrix  | 
fitXs | 
 adequacy coefficients of X variables  | 
fitXp | 
 redundancy coefficients of X variables  | 
fitYs | 
 adequacy coefficients of Y variables  | 
fitYp | 
 redundancy coefficients of Y variables  | 
Jan Graffelman jan.graffelman@upc.edu
Hotelling, H. (1935) The most predictable criterion. Journal of Educational Psychology (26) pp. 139-142.
Hotelling, H. (1936) Relations between two sets of variates. Biometrika (28) pp. 321-377.
Johnson, R. A. and Wichern, D. W. (2002) Applied Multivariate Statistical Analysis. New Jersey: Prentice Hall.
cancor
set.seed(123)
X <- matrix(runif(75),ncol=3)
Y <- matrix(runif(75),ncol=3)
cca.results <- canocov(X,Y)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.