lrcco | R Documentation |
Function lrcco
is a wrapper function around canocov
. It performs logratio canonical correlation analysis (LR-CCO) accepting
two compositional data matrices as input.
lrcco(X, Y)
X |
The matrix of X compositions |
Y |
The matrix of Y compositions |
Matrices X
and Y
are assumed to contain positive elements only, and there rows sum to one.
Returns a list with the following results
ccor |
the canonical correlations |
A |
canonical weights of the X variables |
B |
canonical weights of the Y variables |
U |
canonical X variates |
V |
canonical Y variates |
Fs |
biplot markers for X variables (standard coordinates) |
Gs |
biplot markers for Y variables (standard coordinates) |
Fp |
biplot markers for X variables (principal coordinates) |
Gp |
biplot markers for Y variables (principal coordinates) |
Rxu |
canonical loadings, (correlations X variables, canonical X variates) |
Rxv |
canonical loadings, (correlations X variables, canonical Y variates) |
Ryu |
canonical loadings, (correlations Y variables, canonical X variates) |
Ryv |
canonical loadings, (correlations Y variables, canonical Y variates) |
Sxu |
covariance X variables, canonical X variates |
Sxv |
covariance X variables, canonical Y variates |
Syu |
covariance Y variables, canonical X variates |
Syv |
covariance Y variables, canonical Y variates |
fitRxy |
goodness of fit of the between-set correlation matrix |
fitXs |
adequacy coefficients of X variables |
fitXp |
redundancy coefficients of X variables |
fitYs |
adequacy coefficients of Y variables |
fitYp |
redundancy coefficients of Y variables |
Jan Graffelman jan.graffelman@upc.edu
Hotelling, H. (1935) The most predictable criterion. Journal of Educational Psychology (26) pp. 139-142.
Hotelling, H. (1936) Relations between two sets of variates. Biometrika (28) pp. 321-377.
Johnson, R. A. and Wichern, D. W. (2002) Applied Multivariate Statistical Analysis. New Jersey: Prentice Hall.
Graffelman, J. and Pawlowsky-Glahn, V. and Egozcue, J.J. and Buccianti, A. (2018) Exploration of geochemical data with compositional canonical biplots, Journal of Geochemical Exploration 194, pp. 120–133. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.gexplo.2018.07.014")}
cancor
,canocov
set.seed(123)
X <- matrix(runif(75),ncol=3)
Y <- matrix(runif(75),ncol=3)
Xc <- X/rowSums(X) # create compositions by closure
Yc <- Y/rowSums(Y)
out.lrcco <- lrcco(X,Y)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.