Nothing
#' Calculation of the log-likelihood ratio for `TreeScan`
#'
#' This is an internal function requiered for `TreeScan`.
#'
#' @noRd
#'
#' @param counts a data.table created with `get_cuts`
#'
#' @param no_iteration the number of the Monte-Carlo iteration
#'
#' @param p the expected proportion of unexposed individuals
#'
#' @return a data.table with the following columns
#' \item{no_iteration}{The number of the Monte-Carlo iteration}
#' \item{cut}{The name of the cut}
#' \item{n0}{The number of events amogn unexposed individuals}
#' \item{n1}{The number of events among the exposed individuals}
#' \item{llr}{The log-likelihood ratio}
calc_llr <- function(counts, no_iteration, p){
n0 <- n1 <- q0 <- q1 <- ll0 <- lla <- llr <- iteration <- NULL
counts[, q1 := n1 /(n0 + n1)]
counts[, q0 := n0 /(n0 + n1)]
counts[, lla := log(q1) * n1 + log(q0) * n0]
counts[, ll0 := log(p) * n1 + log(1 - p) * n0]
counts[, llr := (lla - ll0) * as.numeric(q1 > p)]
counts[, list(iteration = no_iteration, cut, n0, n1, llr)]
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.