| endpoint | R Documentation |
Define one or multiple endpoints. This is a user-friendly wrapper for
the class constructor Endpoint$new. Users who are not familiar with
the concept of classes may consider using this wrapper directly.
Note that it is users' responsibility to assure that the units of readout of non-tte endpoints, dropout time, and trial duration are consistent.
endpoint(name, type = c("tte", "non-tte"), readout = NULL, generator, ...)
name |
character vector. Name(s) of endpoint(s) |
type |
character vector. Type(s) of endpoint(s) in |
readout |
numeric vector named by non-tte endpoint(s).
|
generator |
a RNG function. Its first argument must be |
... |
(optional) arguments of |
set.seed(12345)
## Example 1. Generate a time-to-event endpoint.
## Two columns are returned, one for time, one for event (1/0, 0 for
## A built-in RNG function is used to handle piecewise constant exponential
## distribution
risk <- data.frame(
end_time = c(1, 10, 26.0, 52.0),
piecewise_risk = c(1, 1.01, 0.381, 0.150) * exp(-3.01)
)
pfs <- endpoint(name = 'pfs', type='tte',
generator = PiecewiseConstantExponentialRNG,
risk = risk, endpoint_name = 'pfs')
# run it in R console to display a summary report
# event indicator takes values 0/1
pfs
## Example 2. Generate continuous and binary endpoints using R's built-in
## RNG functions, e.g. rnorm, rexp, rbinom, etc.
ep1 <- endpoint(
name = 'cd4', type = 'non-tte', generator = rnorm, readout = c(cd4=1),
mean = 1.2)
ep2 <- endpoint(
name = 'resp_time', type = 'non-tte', generator = rexp, readout = c(resp_time=0),
rate = 4.5)
ep3 <- endpoint(
name = 'orr', type = 'non-tte', readout = c(orr=3), generator = rbinom,
size = 1, prob = .4)
ep1 # run it in R console. Mean and sd should be comparable to (1.2, 1.0)
ep2 # run it in R console. Median should be comparable to log(2)/4.5 = 0.154
ep3 # run it in R console. Mean and sd should be comparable to 0.4 and 0.49
## Example3: delayed effect
## Use piecewise constant exponential random number generator
## Baseline hazards are piecewise constant
## Hazard ratios are piecewise constant, resulting a delayed effect.
## Note that this example is for explaining the concept of "endpoint".
## Generating endpoint data manually is not the recommended way to use this package.
run <- TRUE
if (!requireNamespace("survminer", quietly = TRUE)) {
run <- FALSE
message("Please install 'survminer' to run this example.")
}
if (!requireNamespace("survival", quietly = TRUE)) {
run <- FALSE
message("Please install 'survival' to run this example.")
}
if(run){
risk1 <- risk
ep1 <- endpoint(
name = 'pfs', type='tte',
generator = PiecewiseConstantExponentialRNG,
risk=risk1, endpoint_name = 'pfs')
risk2 <- risk1
risk2$hazard_ratio <- c(1, 1, .6, .4)
ep2 <- endpoint(
name = 'pfs', type='tte',
generator = PiecewiseConstantExponentialRNG,
risk=risk2, endpoint_name = 'pfs')
n <- 1000
tte <- rbind(ep1$get_generator()(n), ep2$get_generator()(n))
arm <- rep(0:1, each = n)
dat <- data.frame(tte, arm)
sfit <- survival::survfit(
survival::Surv(time = pfs, event = pfs_event) ~ arm, dat)
survminer::ggsurvplot(sfit,
data = dat,
pval = TRUE, # Show p-value
conf.int = TRUE, # Show confidence intervals
risk.table = TRUE, # Add risk table
palette = c("blue", "red"))
## print summary reports for endpoint objects in console
ep1
ep2
}
## Example 4: generate correlated pfs and os
## See vignette('simulatePfsAndOs')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.