Description Usage Arguments Value Examples
Predict topics of tweets using fitted LDA model.
1 2 3 4 5 6 7 8 9 |
data |
Data frame of parsed tweets. Obtained either by using |
lda_model |
Fitted LDA Model. Object of class LDA. |
response |
Type of response. Either "prob" for probabilities or "max" one topic (default). |
remove_numbers |
Logical. If |
remove_punct |
Logical. If |
remove_symbols |
Logical. If |
remove_url |
Logical. If |
Data frame of topic predictions or predicted probabilities per topic (see response).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | ## Not run:
library(Twitmo)
# load tweets (included in package)
mytweets <- load_tweets(system.file("extdata", "tweets_20191027-141233.json", package = "Twitmo"))
# Pool tweets into longer pseudo-documents
pool <- pool_tweets(data = mytweets)
pooled_dfm <- pool$document_term_matrix
# fit your LDA model with 7 topics
model <- fit_lda(pooled_dfm, n_topics = 7, method = "Gibbs")
# Predict topics of tweets using your fitted LDA model
predict_lda(mytweets, model, response = "prob")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.