Nothing
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
library(cli)
library(UAHDataScienceSC)
## ----install-package, eval = FALSE--------------------------------------------
# install.packages("UAHDataScienceSC")
## ----load-package-------------------------------------------------------------
library(UAHDataScienceSC)
## ----load-flower-db-----------------------------------------------------------
data("db_flowers")
head(db_flowers)
## ----load-and-db--------------------------------------------------------------
data("db_per_and.rda")
head(db_per_and)
## ----load-or-db---------------------------------------------------------------
data("db_per_or.rda")
head(db_per_or)
## ----load-xor-db--------------------------------------------------------------
data("db_per_xor.rda")
head(db_per_xor)
## ----load-db2-----------------------------------------------------------------
data(db2)
head(db2)
## ----load-db3-----------------------------------------------------------------
data(db3)
head(db3)
## ----load-db1rl---------------------------------------------------------------
data("db1rl")
head(db1rl)
## ----knn-basic-usage----------------------------------------------------------
result <- knn(
data = db_flowers,
ClassLabel = "ClassLabel",
p1 = c(4.7, 1.2, 5.3, 2.1),
d_method = "euclidean",
k = 3
)
print(result)
## ----knn-interactive-usage----------------------------------------------------
result <- knn(
data = db_flowers,
ClassLabel = "ClassLabel",
p1 = c(4.7, 1.2, 5.3, 2.1),
d_method = "euclidean",
k = 3,
learn = TRUE,
waiting = FALSE
)
## ----decision-tree-usage------------------------------------------------------
tree <- decision_tree(
data = db2,
classy = "VehicleType",
m = 4,
method = "gini",
learn = TRUE
)
print(tree)
## ----perceptron-usage---------------------------------------------------------
weights <- perceptron(
training_data = db_per_and,
to_clasify = c(0, 0, 1),
activation_method = "swish",
max_iter = 1000,
learning_rate = 0.1,
learn = TRUE
)
## ----regression-usage---------------------------------------------------------
# Linear regression
linear_model <- multivariate_linear_regression(
data = db1rl,
learn = TRUE
)
# Polynomial regression
poly_model <- polynomial_regression(
data = db1rl,
degree = 4,
learn = TRUE
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.