Description Usage Arguments Details Value References See Also Examples
Function for the determination of a grey zone for ordinal diagnostic and screening tests
1 2 3 4 5 6 7 8 |
ref |
The reference standard. A column in a data frame or a vector indicating the reference or gold standard. The reference standard must be coded either as 0 (absence of the condition) or 1 (presence of the condition). |
test |
The numeric test scores under evaluation. When
|
pretest.prob |
The pre-test probability to be used. When NULL, the prevalence found in the sample is used. |
criterion.values |
The minimum desired values for respectively the negative and positive post-test probability. |
return.all |
Default = FALSE. When TRUE the full table of all results are returned. |
precision |
Default = 3. Precision used for comparison of the criterion values and the post-test probabilities. |
This function is proposed by Coste et al. (2003). The current implementation only handles ordinal test values. This functions uses all possible test scores as dichotomous thresholds to calculate Se, Sp, positive and negative likelihood ratios and post-test probabilities. The likelihood ratios are calculated for the accumulated densities of the test scores and indicate the levels of seriousness of the disease for all possible dichotomous thresholds. It uses therefore a cumulative interpretation of the Likelihood Ratios and posttest probabilities. If a test has test scores 1 to 5 (with 5 indicating the largest probability of the disease), Se, positive LR and positive posttest probabilities of the greyzone function uses dichotomous thresholds that concern test results >= 1, >= 2, >= 3, >= 4 and >= 5, while Sp, negative LR and negative posttest probabilities concern test results <= 1, <= 2, <= 3, <= 4 and <= 5. Please note that in these examples values <= 1 respectively <= 5 concern all possible test values and have by definition a dichotomous Sensitivity of 1.
Please note that the definition of a grey zone deviates from the definition of an uncertain interval.
The decision criteria are the required values of post-test probabilities. This has changed in version 0.7. In earlier versions the criteria was a value closest to the criterion, which could produce invalid results. These post-test probabilities of accumulated test scores may require a value over 0.99 or even 0.999 (or under 0.01 or 0.001) to confirm or exclude the presence of a target disease. Only tests of the highest quality can reach such criteria. The default criterion values are .05 and .95 for respectively a negative and positive classification, which may be sufficient for use by clinicians or Public Health professionals for a first classification whether a target disease may be present or not (Coste et al., 2003).
As such the cumulative likelihood ratios differ from the Interval
Likelihood Ratios (see RPV
), as proposed by Sonis (1999).
These likelihood ratios are calculated for each given interval of test
scores separately and uses their densities. In contrast to the greyzone
method, Interval Likelihood ratios and interval posttest probabilities
concern the separate intervals, that is in this example, the separate score
1 to 5. Interval likelihood ratios assign a specific value to each level of
abnormality, and this value is used to calculate the posttest probabilities
of disease for each given level of a test (Sonis, 1999). These post-test
probabilities differ strongly from the cumulative post-test probabilities
and criterion values can be much lower, especially when diseases are life
threatening and low-cost treatments are available. See Sonis (1999) for
further discussion of the interval interpretation.
The function returns the lower and upper value of the range of test scores that are considered 'grey' or inconclusive. Only smaller or larger values are considered for a decision. When return.all = TRUE the full table of the results is returned.
Coste, J., Jourdain, P., & Pouchot, J. (2006). A gray zone assigned to inconclusive results of quantitative diagnostic tests: application to the use of brain natriuretic peptide for diagnosis of heart failure in acute dyspneic patients. Clinical Chemistry, 52(12), 2229-2235.
Coste, J., & Pouchot, J. (2003). A grey zone for quantitative diagnostic and screening tests. International Journal of Epidemiology, 32(2), 304-313.
Sonis, J. (1999). How to use and interpret interval likelihood ratios. Family Medicine, 31, 432-437.
1 2 3 4 5 6 7 8 9 10 11 | ref=c(rep(0, 250), rep(1, 250))
test = c(rep(1:5, c(90,75,50,34,1)), c(rep(1:5, c(10,25,50,65,100))))
addmargins(table(ref, test))
greyzone(ref, test, ret=TRUE, criterion.values=c(.1, .9))
test = c(rep(14:31, c(0,0,0,0,0,0,3,3,5,7,10,20,30,40,50,24,10,10)),
rep(14:31, c(1,0,0,0,0,0,1,4,4,9, 6,13, 8, 6, 5, 4, 0, 0)))
ref = c(rep(0, 212), rep(1, 61))
barplotMD(ref, test)
addmargins(table(ref, test))
greyzone(ref, test, ret=TRUE, crit=c(.1,.9))
|
test
ref 1 2 3 4 5 Sum
0 90 75 50 34 1 250
1 10 25 50 65 100 250
Sum 100 100 100 99 101 500
$table
thresholds d0 d1 tot TP FP TN FN tpr fpr preodds sp se neg.lr
1 1 90 10 100 250 250 0 0 1.00 1.000 1 0.000 1.00 NaN
2 2 75 25 100 240 160 90 10 0.96 0.640 1 0.360 0.96 0.1111111
3 3 50 50 100 215 85 165 35 0.86 0.340 1 0.660 0.86 0.2121212
4 4 34 65 99 165 35 215 85 0.66 0.140 1 0.860 0.66 0.3953488
5 5 1 100 101 100 1 249 150 0.40 0.004 1 0.996 0.40 0.6024096
pos.lr negpostodds pospostodds negpostprob pospostprob
1 1.000000 NaN 1.000000 NaN 0.5000000
2 1.500000 0.1111111 1.500000 0.1000000 0.6000000
3 2.529412 0.2121212 2.529412 0.1750000 0.7166667
4 4.714286 0.3953488 4.714286 0.2833333 0.8250000
5 100.000000 0.6024096 100.000000 0.3759398 0.9900990
$thresholds
lt ut
2 4
test
ref 14 20 21 22 23 24 25 26 27 28 29 30 31 Sum
0 0 3 3 5 7 10 20 30 40 50 24 10 10 212
1 1 1 4 4 9 6 13 8 6 5 4 0 0 61
Sum 1 4 7 9 16 16 33 38 46 55 28 10 10 273
$table
thresholds d0 d1 tot TP FP TN FN tpr fpr preodds
1 14 0 1 1 61 212 0 0 1.00000000 1.00000000 0.2877358
2 20 3 1 4 60 212 0 1 0.98360656 1.00000000 0.2877358
3 21 3 4 7 59 209 3 2 0.96721311 0.98584906 0.2877358
4 22 5 4 9 55 206 6 6 0.90163934 0.97169811 0.2877358
5 23 7 9 16 51 201 11 10 0.83606557 0.94811321 0.2877358
6 24 10 6 16 42 194 18 19 0.68852459 0.91509434 0.2877358
7 25 20 13 33 36 184 28 25 0.59016393 0.86792453 0.2877358
8 26 30 8 38 23 164 48 38 0.37704918 0.77358491 0.2877358
9 27 40 6 46 15 134 78 46 0.24590164 0.63207547 0.2877358
10 28 50 5 55 9 94 118 52 0.14754098 0.44339623 0.2877358
11 29 24 4 28 4 44 168 57 0.06557377 0.20754717 0.2877358
12 30 10 0 10 0 20 192 61 0.00000000 0.09433962 0.2877358
13 31 10 0 10 0 10 202 61 0.00000000 0.04716981 0.2877358
sp se neg.lr pos.lr negpostodds pospostodds negpostprob
1 0.00000000 1.00000000 NaN 1.0000000 NaN 0.28773585 NaN
2 0.00000000 0.98360656 Inf 0.9836066 Inf 0.28301887 NaN
3 0.01415094 0.96721311 2.316940 0.9810966 0.6666667 0.28229665 0.4000000
4 0.02830189 0.90163934 3.475410 0.9279007 1.0000000 0.26699029 0.5000000
5 0.05188679 0.83606557 3.159463 0.8818204 0.9090909 0.25373134 0.4761905
6 0.08490566 0.68852459 3.668488 0.7524083 1.0555556 0.21649485 0.5135135
7 0.13207547 0.59016393 3.103044 0.6799715 0.8928571 0.19565217 0.4716981
8 0.22641509 0.37704918 2.751366 0.4874050 0.7916667 0.14024390 0.4418605
9 0.36792453 0.24590164 2.049601 0.3890384 0.5897436 0.11194030 0.3709677
10 0.55660377 0.14754098 1.531537 0.3327520 0.4406780 0.09574468 0.3058824
11 0.79245283 0.06557377 1.179157 0.3159463 0.3392857 0.09090909 0.2533333
12 0.90566038 0.00000000 1.104167 0.0000000 0.3177083 0.00000000 0.2411067
13 0.95283019 0.00000000 1.049505 0.0000000 0.3019802 0.00000000 0.2319392
pospostprob
1 0.22344322
2 0.22058824
3 0.22014925
4 0.21072797
5 0.20238095
6 0.17796610
7 0.16363636
8 0.12299465
9 0.10067114
10 0.08737864
11 0.08333333
12 0.00000000
13 0.00000000
$thresholds
lt ut
31 14
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.