Provides methods for imputation and visualization of missing values. It includes graphical tools to explore the amount, structure and patterns of missing and/or imputed values, supporting exploratory data analysis and helping to investigate potential missingness mechanisms (details in Alfons, Templ and Filzmoser, <doi:10.1007/s11634-011-0102-y>. The quality of imputations can be assessed visually using a wide range of univariate, bivariate and multivariate plots. The package further provides several imputation methods, including efficient implementations of k-nearest neighbour and hot-deck imputation (Kowarik and Templ 2013, <doi:10.18637/jss.v074.i07>, iterative robust model-based multiple imputation (Templ 2011, <doi:10.1016/j.csda.2011.04.012>; Templ 2023, <doi:10.3390/math11122729>), and machine learning–based approaches such as robust GAM-based multiple imputation (Templ 2024, <doi:10.1007/s11222-024-10429-1>) as well as gradient boosting (XGBoost) and transformer-based methods (Niederhametner et al., <doi:10.1177/18747655251339401>). General background and practical guidance on imputation are provided in the Springer book by Templ (2023) <doi:10.1007/978-3-031-30073-8>.
Package details |
|
|---|---|
| Author | Matthias Templ [aut, cre], Alexander Kowarik [aut] (ORCID: <https://orcid.org/0000-0001-8598-4130>), Andreas Alfons [aut], Johannes Gussenbauer [aut], Nina Niederhametner [aut], Eileen Vattheuer [aut], Gregor de Cillia [aut], Bernd Prantner [ctb], Wolfgang Rannetbauer [aut] |
| Maintainer | Matthias Templ <matthias.templ@gmail.com> |
| License | GPL (>= 2) |
| Version | 7.0.0 |
| URL | https://github.com/statistikat/VIM |
| Package repository | View on CRAN |
| Installation |
Install the latest version of this package by entering the following in R:
|
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.