| matchImpute | R Documentation | 
Suitable donors are searched based on matching of the categorical variables. The variables are dropped in reversed order, so that the last element of 'match_var' is dropped first and the first element of the vector is dropped last.
matchImpute( data, variable = colnames(data)[!colnames(data) %in% match_var], match_var, imp_var = TRUE, imp_suffix = "imp" )
| data | data.frame, data.table or matrix | 
| variable | variables to be imputed | 
| match_var | variables used for matching | 
| imp_var | TRUE/FALSE if a TRUE/FALSE variables for each imputed variable should be created show the imputation status | 
| imp_suffix | suffix for the TRUE/FALSE variables showing the imputation status | 
The method works by sampling values from the suitable donors.
the imputed data set.
Johannes Gussenbauer, Alexander Kowarik
hotdeck()
Other imputation methods: 
hotdeck(),
impPCA(),
irmi(),
kNN(),
medianSamp(),
rangerImpute(),
regressionImp(),
sampleCat()
data(sleep,package="VIM")
imp_data <- matchImpute(sleep,variable=c("NonD","Dream","Sleep","Span","Gest"),
  match_var=c("Exp","Danger"))
data(testdata,package="VIM")
imp_testdata1 <- matchImpute(testdata$wna,match_var=c("c1","c2","b1","b2"))
dt <- data.table::data.table(testdata$wna)
imp_testdata2 <- matchImpute(dt,match_var=c("c1","c2","b1","b2"))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.