View source: R/regressionImp.R
regressionImp | R Documentation |
Impute missing values based on a regression model.
regressionImp( formula, data, family = "AUTO", robust = FALSE, imp_var = TRUE, imp_suffix = "imp", mod_cat = FALSE )
formula |
model formula to impute one variable |
data |
A data.frame containing the data |
family |
family argument for |
robust |
|
imp_var |
|
imp_suffix |
suffix used for TF imputation variables |
mod_cat |
|
lm()
is used for family "normal" and glm()
for all other families.
(robust=TRUE: lmrob()
, glmrob()
)
the imputed data set.
Alexander Kowarik
A. Kowarik, M. Templ (2016) Imputation with R package VIM. Journal of Statistical Software, 74(7), 1-16.
Other imputation methods:
hotdeck()
,
impPCA()
,
irmi()
,
kNN()
,
matchImpute()
,
medianSamp()
,
rangerImpute()
,
sampleCat()
data(sleep) sleepImp1 <- regressionImp(Dream+NonD~BodyWgt+BrainWgt,data=sleep) sleepImp2 <- regressionImp(Sleep+Gest+Span+Dream+NonD~BodyWgt+BrainWgt,data=sleep) data(testdata) imp_testdata1 <- regressionImp(b1+b2~x1+x2,data=testdata$wna) imp_testdata3 <- regressionImp(x1~x2,data=testdata$wna,robust=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.