Nothing
backtrack.beta <- function(result_fit, node, alpha.level = 0.05, trace = TRUE)UseMethod("backtrack.beta")
##########################################################################################################
##########################################################################################################
##########################################################################################################
## find the children whose betas were cut - only return those without grandchildren (nodes with grandchild cant be prunned)
backtrack.beta.default <- function(result_fit, node, alpha.level = 0.05, trace = FALSE)
{
X = result_fit$X
y = result_fit$y
alphabet = sort(unique(y))
d = ifelse(is.null(dim(X)), 1, dim(X)[2])
need.to.backtrack.beta = TRUE
while ((need.to.backtrack.beta == TRUE) && (!is.null(node$beta)))
{
result_fit_H0 = result_fit
if (dim(node$beta)[1] == 1)
node$beta = NULL
else
node$beta = array(0,c(dim(node$beta)[1]-1, d, length(alphabet)-1)) ## steps, d, alphabet
result_fit_H0$tree = update.node(result_fit_H0$tree, node)
result_fit_H0$tree = estimate(result_fit_H0$tree, y, X)
p.value = 1-pchisq(-2*(LogLik(result_fit_H0) - LogLik(result_fit)), d*(length(alphabet)-1))
if (p.value > alpha.level)
{
if (trace == TRUE)
if (is.null(node$beta))
cat("\n pruning beta parameters sequentially for node ", node$context, ": now beta depth 0")
else
cat("\n pruning beta parameters sequentially for node ", node$context, ": now beta depth ", dim(node$beta)[1])
result_fit = result_fit_H0
}
else
need.to.backtrack.beta = FALSE
}
return(result_fit)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.