Helnormal | R Documentation |
Given a q
-dimensional random vector \mathbf{X} = (\mathbf{X}_{1},...,\mathbf{X}_{k})
with \mathbf{X}_{i}
a d_{i}
-dimensional random vector, i.e., q = d_{1} + ... + d_{k}
,
this function computes the correlation-based Hellinger distance between \mathbf{X}_{1},...,\mathbf{X}_{k}
given the entire correlation matrix \mathbf{R}
.
Helnormal(R, dim)
R |
The correlation matrix of |
dim |
The vector of dimensions |
Given a correlation matrix
\mathbf{R} = \begin{pmatrix} \mathbf{R}_{11} & \mathbf{R}_{12} & \cdots & \mathbf{R}_{1k} \\
\mathbf{R}_{12}^{\text{T}} & \mathbf{R}_{22} & \cdots & \mathbf{R}_{2k} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{R}_{1k}^{\text{T}} & \mathbf{R}_{2k}^{\text{T}} & \cdots & \mathbf{R}_{kk} \end{pmatrix},
the Hellinger distance equals
\mathcal{D}_{(\sqrt{t}-1)^{2}}^{\mathcal{N}}(\mathbf{R}) = 2 - 2 \frac{2^{q/2} |\mathbf{R}|^{1/4}}{\left |\mathbf{I}_{q} + \mathbf{R}_{0}^{-1} \mathbf{R} \right |^{1/2} \prod_{i = 1}^{k} \left | \mathbf{R}_{ii} \right |^{1/4}},
where \mathbf{I}_{q}
denotes the identity matrix, and \mathbf{R}_{0} = \text{diag}(\mathbf{R}_{11},\dots,\mathbf{R}_{kk})
is the correlation matrix under independence of \mathbf{X}_{1}, \dots, \mathbf{X}_{k}
.
The underlying assumption is that the copula of \mathbf{X}
is Gaussian.
The correlation-based Hellinger distance between \mathbf{X}_{1},...,\mathbf{X}_{k}
.
De Keyser, S. & Gijbels, I. (2024).
Parametric dependence between random vectors via copula-based divergence measures.
Journal of Multivariate Analysis 203:105336.
doi: https://doi.org/10.1016/j.jmva.2024.105336.
minormal
for the computation of the Gaussian copula mutual information,
Helnormalavar
for the computation of the asymptotic variance of the plug-in estimator for the Gaussian copula Hellinger distance.
q = 10
dim = c(1,2,3,4)
# AR(1) correlation matrix with correlation 0.5
R = 0.5^(abs(matrix(1:q-1,nrow = q, ncol = q, byrow = TRUE) - (1:q-1)))
Helnormal(R,dim)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.