bwd2 | R Documentation |
Given a q
-dimensional random vector \mathbf{X} = (\mathbf{X}_{1},...,\mathbf{X}_{k})
with \mathbf{X}_{i}
a d_{i}
-dimensional random vector, i.e., q = d_{1} + ... + d_{k}
,
this function computes the correlation-based Bures-Wasserstein coefficient \mathcal{D}_{2}
between \mathbf{X}_{1},...,\mathbf{X}_{k}
given the entire correlation matrix \mathbf{R}
.
bwd2(R, dim)
R |
The correlation matrix of |
dim |
The vector of dimensions |
Given a correlation matrix
\mathbf{R} = \begin{pmatrix} \mathbf{R}_{11} & \mathbf{R}_{12} & \cdots & \mathbf{R}_{1k} \\
\mathbf{R}_{12}^{\text{T}} & \mathbf{R}_{22} & \cdots & \mathbf{R}_{2k} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{R}_{1k}^{\text{T}} & \mathbf{R}_{2k}^{\text{T}} & \cdots & \mathbf{R}_{kk} \end{pmatrix},
the coefficient \mathcal{D}_{2}
equals
\mathcal{D}_{2}(\mathbf{R}) =
\frac{d_{W}^{2}(\mathbf{R},\mathbf{R}_{0})}{\sup_{\mathbf{A} \in \Gamma(\mathbf{R}_{11}, \dots, \mathbf{R}_{kk})} d_{W}^{2}(\mathbf{A},\mathbf{R}_{0})},
where d_{W}
stands for the Bures-Wasserstein distance, \Gamma(\mathbf{R}_{11}, \dots, \mathbf{R}_{kk})
denotes the set of all correlation matrices
with diagonal blocks \mathbf{R}_{ii}
for i = 1, \dots, k
, and the matrix \mathbf{R}_{0} = \text{diag}(\mathbf{R}_{11},\dots,\mathbf{R}_{kk})
is the correlation matrix under independence.
The underlying assumption is that the copula of \mathbf{X}
is Gaussian.
The second Bures-Wasserstein dependence coefficient \mathcal{D}_{2}
between \mathbf{X}_{1},...,\mathbf{X}_{k}
.
De Keyser, S. & Gijbels, I. (2024). High-dimensional copula-based Wasserstein dependence. doi: https://doi.org/10.48550/arXiv.2404.07141.
bwd1
for the computation of the first Bures-Wasserstein dependence coefficient \mathcal{D}_{1}
,
bwd2avar
for the computation of the asymptotic variance of the plug-in estimator for \mathcal{D}_{2}
.
q = 10
dim = c(1,2,3,4)
# AR(1) correlation matrix with correlation 0.5
R = 0.5^(abs(matrix(1:q-1,nrow = q, ncol = q, byrow = TRUE) - (1:q-1)))
bwd2(R,dim)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.