Nothing
# ---------------------------------------------------------------------------- #
#' yoga
#'
#' @description Yoga for a given place and time
#'
#' @param jd Julian day number
#' @param place Vector containing latitude, longitude and timezone
#'
#' @return Yoga and it's ending time
#'
#' @examples
#' yoga(2459778,c(15.34, 75.13, +5.5))
#' yoga(gregorian_to_jd(17,6,2022),c(15.34, 75.13, +5.5))
yoga <- function(jd,place){
#Yoga as -> 1 = Vishkambha, 2 = Priti, ..., 27 = Vaidhrti
swephR::swe_set_sid_mode(swephR::SE$SIDM_LAHIRI,0,0)
# 1. Find time of sunrise
lat = place[1]
lon = place[2]
tz = place[3]
rise = sunrise(jd,place)[1]-(tz/24)
# 2. Find the Nirayana longitudes and add them
lunar_long = (moon_longitude(rise) - swephR::swe_get_ayanamsa_ex_ut(rise,swephR::SE$FLG_SWIEPH + swephR::SE$FLG_NONUT)$daya) %% 360
solar_long = (sun_longitude(rise) - swephR::swe_get_ayanamsa_ex_ut(rise,swephR::SE$FLG_SWIEPH + swephR::SE$FLG_NONUT)$daya) %% 360
total = (lunar_long + solar_long) %% 360
# There are 27 Yogas spanning 360 degrees
yog = ceiling(total * 27 / 360)
# 3. Find how many longitudes is there left to be swept
degrees_left = yog * (360 / 27) - total
# 4. Compute longitudinal sums at intervals of 0.25 days from sunrise
offsets = c(0.25,0.5,0.75,1.0)
lunar_longitude_diff = c()
solar_longitude_diff = c()
total_motion = c()
for(i in 1:length(offsets)){
lunar_longitude_diff <- append(lunar_longitude_diff,((moon_longitude(rise + offsets[i]) - moon_longitude(rise)) %% 360))
solar_longitude_diff <- append(solar_longitude_diff,((sun_longitude(rise + offsets[i]) - sun_longitude(rise)) %% 360))
total_motion <- append(total_motion,(lunar_longitude_diff[i] + solar_longitude_diff[i]))
}
# 5. Find end time by 4-point inverse Lagrange interpolation
y = total_motion
x = offsets
# compute fraction of day (after sunrise) needed to traverse 'degrees_left'
approx_end = inverse_lagrange(x, y, degrees_left)
ends = (rise + approx_end - jd) * 24 + tz
answer = c(as.integer(yog),to_dms(ends))
# 5. Check for skipped yoga
lunar_long_tmrw = (moon_longitude(rise + 1) - swephR::swe_get_ayanamsa_ex_ut(rise + 1,swephR::SE$FLG_SWIEPH + swephR::SE$FLG_NONUT)$daya) %% 360
solar_long_tmrw = (sun_longitude(rise + 1) - swephR::swe_get_ayanamsa_ex_ut(rise + 1,swephR::SE$FLG_SWIEPH + swephR::SE$FLG_NONUT)$daya) %% 360
total_tmrw = (lunar_long_tmrw + solar_long_tmrw) %% 360
tomorrow = ceiling(total_tmrw * 27 / 360)
if(((tomorrow - yog) %% 27) > 1){
# interpolate again with same (x,y)
leap_yog = (yog + 1)
degrees_left = leap_yog * (360 / 27) - total
approx_end = inverse_lagrange(x, y, degrees_left)
ends = (rise + approx_end - jd) * 24 + tz
if(leap_yog >= 28){
leap_yog = (leap_yog %% 28) + 1
}
answer <- append(answer,c(as.integer(leap_yog),to_dms(ends)))
}
return (answer)
}
# ---------------------------------------------------------------------------- #
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.