plotCI | R Documentation |
The plotCI
function is intended for graphing confidence intervals. The difplot
function is a wrapper for plotCI
specifcally intended for examining Differential Item Functioning from ConQuest output.
plotCI(ests, errors, labels = "", zeroline = TRUE, incol = "gray", outcol = "blue"
, main.title = "Statistical Significance Plot", axes = FALSE, xlab = "", pch = 16, ...)
## Default S3 method:
difplot(data, grouptype = NULL, group = NULL, item.names = NULL
, ylim = c(-1, 1), ylab = NULL, ...)
## S3 method for class 'CQmodel'
difplot(data, table.name = NULL, grouptype = NULL
, group = NULL, ...)
## S3 method for class 'character'
difplot(data, equation, ...)
plotCI
parameters:
ests |
vector of point estimates. |
errors |
vector of standard errors. |
labels |
vector of labels for the items. |
zeroline |
logical indicating whether to draw a line at zero. |
incol |
color of intervals containing zero. |
outcol |
color of intervals not containing zero. |
main.title |
title of the plot. |
axes , xlab , pch |
parameters passed to |
difplot
parameters:
data |
A |
table.name |
The RMP table to use for parameters. Should be an interactions table. |
grouptype |
The name of the demographic variable (e.g. “gender”). |
group |
The name of the group to test for DIF (e.g. “male”). |
item.names |
vector of item names. |
equation |
string specifying the model equation, if the Summary of Estimation table was not included in the show file. |
ylim , ylab |
more parameters passed to |
... |
additional parameters to pass to |
The plotCI
function takes point estimates and standard errors as inputs and plots 95 percent confidence intervals in relation to a zero-line. By default, it colors the intervals gray if they include zero, and blue if they do not. The difplot
function is a wrapper for plotCI
specifcally intended for examining Differential Item Functioning from ConQuest output and expects tables formatted exactly like ConQuest output to work correctly. For plotting DIF from other statistical packages, it is recommended to use plotCI
directly.
David Torres Irribarra and Rebecca Freund
#Plotting confidence intervals
ests <- rnorm(10,sd = .5)
errors <- runif(10,min = .1,max = .5)
plotCI(ests,errors,ylim = c(-3,3))
#DIF plot:
fpath <- system.file("extdata", package="WrightMap")
# equation must be specified because there is no summary of estimation
# table in this example
difplot(file.path(fpath,"ex6a.shw"), equation = "item-gender+item*gender")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.