Nothing
#' A Canonical Correlation Analysis with Inferential Guaranties
#'
#' @description It performs Canonical Correlation Analysis and provides inferential guaranties on the correlation components. The p-values are computed following the resampling method developed in Winkler, A. M., Renaud, O., Smith, S. M., & Nichols, T. E. (2020). Permutation inference for canonical correlation analysis. NeuroImage, <doi:10.1016/j.neuroimage.2020.117065>. Furthermore, it provides plotting tools to visualize the results.
#' @examples
#' set.seed(1)
#' X=matrix(rnorm(500),100,5)
#' Y=matrix(rnorm(700),100,7)
#' Z=matrix(rnorm(200),100,2)
#' mod=cc(X,Y,Z)
#' mod
#'
#' ccbiplot(mod)
#'
#' mod=cc_inference(mod, B = 100, numb_cc = 3)
#' mod
#'
#' @docType package
#'
#' @author Livio Finos
#' @name acca-package
#' @importFrom methods is
#' @importFrom stats cor model.matrix qchisq rbinom var
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.