Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo=TRUE)
## ----echo=TRUE, message=FALSE, warning=FALSE, eval=FALSE----------------------
# install.packages("adjustedCurves")
## ----echo=TRUE, message=FALSE, warning=FALSE, eval=FALSE----------------------
# remotes::install_github("RobinDenz1/adjustedCurves")
## ----echo=TRUE, message=FALSE, warning=FALSE----------------------------------
library(survival)
library(ggplot2)
library(riskRegression)
library(pammtools)
library(adjustedCurves)
# set random number generator seed to make this reproducible
set.seed(44)
# simulate standard survival data with 300 rows
data_1 <- sim_confounded_surv(n=300, max_t=1.1, group_beta=-0.6)
# code the grouping variable as a factor
data_1$group <- as.factor(data_1$group)
# take a look at the first few rows
head(data_1)
## ----echo=TRUE----------------------------------------------------------------
# it is important to use X=TRUE in the coxph function call
outcome_model <- survival::coxph(Surv(time, event) ~ x1 + x2 + x3 + x4 + x5 +
x6 + group, data=data_1, x=TRUE)
## ----echo=TRUE, message=FALSE-------------------------------------------------
adjsurv <- adjustedsurv(data=data_1,
variable="group",
ev_time="time",
event="event",
method="direct",
outcome_model=outcome_model,
conf_int=TRUE)
## ----echo=TRUE----------------------------------------------------------------
head(adjsurv$adj)
## ----echo=TRUE, fig.show=TRUE, fig.width=7, fig.height=5----------------------
plot(adjsurv)
## ----echo=TRUE, fig.show=TRUE, fig.width=7, fig.height=5----------------------
plot(adjsurv, conf_int=TRUE)
## ----echo=TRUE----------------------------------------------------------------
treatment_model <- glm(group ~ x1 + x2 + x3 + x4 + x5 + x6,
data=data_1, family="binomial"(link="logit"))
adjsurv <- adjustedsurv(data=data_1,
variable="group",
ev_time="time",
event="event",
method="iptw_km",
treatment_model=treatment_model,
conf_int=TRUE)
## ----echo=TRUE, fig.show=TRUE, fig.width=7, fig.height=5----------------------
plot(adjsurv, conf_int=TRUE)
## ----echo=TRUE, fig.width=7, fig.height=5-------------------------------------
adjsurv <- adjustedsurv(data=data_1,
variable="group",
ev_time="time",
event="event",
method="aiptw",
treatment_model=treatment_model,
outcome_model=outcome_model,
conf_int=TRUE)
plot(adjsurv, conf_int=TRUE)
## ----echo=TRUE----------------------------------------------------------------
# simulate the data
data_2 <- sim_confounded_crisk(n=300)
data_2$group <- as.factor(data_2$group)
head(data_2)
## ----echo=TRUE----------------------------------------------------------------
outcome_model <- riskRegression::CSC(Hist(time, event) ~ x1 + x2 + x3 + x4 +
x5 + x6 + group, data=data_2)
## ----echo=TRUE, message=FALSE, fig.show=TRUE, fig.width=7, fig.height=5-------
adjcif <- adjustedcif(data=data_2,
variable="group",
ev_time="time",
event="event",
method="direct",
outcome_model=outcome_model,
cause=1,
conf_int=TRUE)
plot(adjcif, conf_int=TRUE)
## ----echo=TRUE, message=FALSE, fig.show=TRUE, fig.width=7, fig.height=5-------
adjcif <- adjustedcif(data=data_2,
variable="group",
ev_time="time",
event="event",
method="direct",
outcome_model=outcome_model,
cause=2,
conf_int=TRUE)
plot(adjcif, conf_int=TRUE)
## ----echo=TRUE, fig.show=TRUE, fig.width=7, fig.height=5----------------------
treatment_model <- glm(group ~ x1 + x2 + x3 + x4 + x5 + x6,
data=data_2, family="binomial"(link="logit"))
adjcif <- adjustedcif(data=data_2,
variable="group",
ev_time="time",
event="event",
method="iptw",
treatment_model=treatment_model,
cause=1,
conf_int=TRUE)
plot(adjcif, conf_int=TRUE)
## ----echo=TRUE----------------------------------------------------------------
# add another group
# NOTE: this is done only to showcase the method and does not
# reflect what should be done in real situations
data_1$group <- factor(data_1$group, levels=c("0", "1", "2"))
data_1$group[data_1$group=="1"] <- sample(c("1", "2"), replace=TRUE,
size=nrow(data_1[data_1$group=="1",]))
## ----echo=TRUE, fig.show=TRUE, fig.width=7, fig.height=5----------------------
outcome_model <- survival::coxph(Surv(time, event) ~ x1 + x2 + x3 + x4 +
x5 + x6 + group, data=data_1, x=TRUE)
adjsurv <- adjustedsurv(data=data_1,
variable="group",
ev_time="time",
event="event",
method="direct",
outcome_model=outcome_model,
conf_int=TRUE)
plot(adjsurv)
## ----echo=TRUE, message=FALSE, warning=FALSE, fig.show=TRUE, fig.width=7, fig.height=5----
treatment_model <- nnet::multinom(group ~ x1 + x2 + x3 + x4 + x5 + x6,
data=data_1)
adjsurv <- adjustedsurv(data=data_1,
variable="group",
ev_time="time",
event="event",
method="iptw_km",
treatment_model=treatment_model,
conf_int=TRUE)
plot(adjsurv, conf_int=TRUE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.