Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup, warning=FALSE, message=FALSE--------------------------------------
library(aedseo)
## -----------------------------------------------------------------------------
# Construct an 'tsd' object with time series data
set.seed(222)
tsd_data <- generate_seasonal_data(
years = 3,
start_date = as.Date("2020-10-18"),
trend_rate = 1.002,
noise_overdispersion = 3,
relative_epidemic_concentration = 2,
time_interval = "week"
)
## -----------------------------------------------------------------------------
seasonal_onset_results <- seasonal_onset(
tsd = tsd_data,
k = 5,
level = 0.95,
disease_threshold = 20,
family = "quasipoisson",
season_start = 21,
season_end = 20,
only_current_season = FALSE
)
## ----dpi=300------------------------------------------------------------------
plot(seasonal_onset_results)
## -----------------------------------------------------------------------------
prediction <- predict(seasonal_onset_results, n_step = 5)
## ----echo = FALSE-------------------------------------------------------------
prediction <- prediction |>
dplyr::select(-t) |>
dplyr::rename(observation = estimate)
# Extract two seasons for better visualisation:
seasonal_onset_short <- seasonal_onset_results |>
dplyr::filter(season %in% c("2023/2024", "2024/2025"))
# Plot observations and predictions
autoplot(seasonal_onset_short)$observed +
# Add the prediction ribbon
ggplot2::geom_ribbon(
data = prediction,
ggplot2::aes(
x = reference_time,
ymin = lower,
ymax = upper,
fill = "Observations with \n Confidence intervals"
),
alpha = 0.2,
inherit.aes = FALSE
) +
ggplot2::geom_line(
data = prediction,
ggplot2::aes(
x = reference_time,
y = observation,
color = "Observations with \n Confidence intervals"
),
linewidth = 1,
inherit.aes = FALSE
) +
ggplot2::scale_color_manual(
name = "Predictions",
values = c("Observations with \n Confidence intervals" = "red")
) +
ggplot2::scale_fill_manual(
name = "Predictions",
values = c("Observations with \n Confidence intervals" = "red")
) +
ggplot2::coord_cartesian(
xlim = c(
min(seasonal_onset_short$reference_time),
max(prediction$reference_time)
)
)
## ----summary------------------------------------------------------------------
summary(seasonal_onset_results)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.