r.cha | R Documentation |
Computes the measure of affluence analogous to the poverty index of Chakravarty (1983).
r.cha(x, weight, k, beta)
x |
the income vector |
weight |
vector of weights |
k |
multiple of the median income |
beta |
parameter of the index: |
Peichl et. al (2008) defined an affluence index. Weighted index (with weights w_1,w_2,...,w_n
) is given by:
R^{CHA}_{\beta}(\boldsymbol{x},\boldsymbol{w},\rho_w) = \frac{\sum_{i=1}^n(1-(\frac{\rho_w}{x_i})^\beta)\boldsymbol{1}_{x_i > \rho_w}w_i}{\sum_{i=1}^n{w_i}}, \beta > 0,
where x_i
is an income of individual i
, n
is the number of individuals, \rho_w
is the richness line,
\boldsymbol{1}_{(\cdot)}
denotes the indicator function, which is equal to 1 when its argument is true and 0 otherwise.
Index satisfies transfer axiom T1
(concave): a richness index should increase when a rank-preserving progressive transfer between two rich individuals takes place.
r |
elements of the sum in the index formula |
r.cha |
the value of index |
Alicja Wolny-Dominiak, Anna Saczewska-Piotrowska
1. Chakravarty S.R. (1983) A new index of poverty. Mathematical Social Sciences, 6, pp. 307-313.
2. Peichl A., Schaefer T., Scheicher C. (2008) Measuring richness and poverty - A micro data application to Europe and Germany. IZA Discussion Paper No. 3790, Institute for the Study of Labor (IZA).
data(affluence)
r.cha(affluence$income, weight = NULL, 2, 2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.