Nothing
library(pointblank)
method_schema_default <- function(method_to_test, type){
tbl <- data_ratings %>%
method_to_test(type = {{type}}, percent_toggle = TRUE)
test_that("column `method` exists", {
expect_col_exists(
tbl,
columns = vars(method),
threshold = 1
)
})
test_that("column `paper_id` exists", {
expect_col_exists(
tbl,
columns = vars(paper_id),
threshold = 1
)
})
test_that("column `cs` exists", {
expect_col_exists(
tbl,
columns = vars(cs),
threshold = 1
)
})
test_that("column `n_experts` exists", {
expect_col_exists(
tbl,
columns = vars(n_experts),
threshold = 1
)
})
test_that("values in `n_experts` should be between `0` and `25`", {
expect_col_vals_between(
tbl,
columns = vars(n_experts),
left = 0,
right = 25,
threshold = 1
)
})
test_that("values in `cs` should be between `0` and `1`", {
expect_col_vals_between(
tbl,
columns = vars(cs),
left = 0,
right = 1,
threshold = 1
)
})
test_that("column `method` is of type: character", {
expect_col_is_character(
tbl,
columns = vars(method),
threshold = 1
)
})
test_that("column `paper_id` is of type: character", {
expect_col_is_character(
tbl,
columns = vars(paper_id),
threshold = 1
)
})
test_that("column `n_experts` is of type: integer", {
expect_col_is_integer(
tbl,
columns = vars(n_experts),
threshold = 1
)
})
test_that("all values in `method` should not be NULL", {
expect_col_vals_not_null(
tbl,
columns = vars(method),
threshold = 1
)
})
test_that("all values in `paper_id` should not be NULL", {
expect_col_vals_not_null(
tbl,
columns = vars(paper_id),
threshold = 1
)
})
test_that("all values in `cs` should not be NULL", {
expect_col_vals_not_null(
tbl,
columns = vars(cs),
threshold = 1
)
})
test_that("all values in `n_experts` should not be NULL", {
expect_col_vals_not_null(
tbl,
columns = vars(n_experts),
threshold = 1
)
})
}
# Measures of unweighted aggregation
method_schema_default(AverageWAgg, type = "ArMean")
method_schema_default(AverageWAgg, type = "Median")
method_schema_default(AverageWAgg, type = "GeoMean")
method_schema_default(AverageWAgg, type = "LOArMean")
method_schema_default(AverageWAgg, type = "ProbitArMean")
method_schema_default(LinearWAgg, type = "DistLimitWAgg")
method_schema_default(LinearWAgg, type = "GranWAgg")
method_schema_default(LinearWAgg, type = "OutWAgg")
method_schema_default(IntervalWAgg, type = "IntWAgg")
method_schema_default(IntervalWAgg, type = "IndIntWAgg")
method_schema_default(IntervalWAgg, type = "AsymWAgg")
method_schema_default(IntervalWAgg, type = "IndIntAsymWAgg")
method_schema_default(IntervalWAgg, type = "VarIndIntWAgg")
method_schema_default(IntervalWAgg, type = "KitchSinkWAgg")
method_schema_default(DistributionWAgg, type = "DistribArMean")
method_schema_default(DistributionWAgg, type = "TriDistribArMean")
method_schema_default(ShiftingWAgg, type = "ShiftWAgg")
method_schema_default(ShiftingWAgg, type = "BestShiftWAgg")
method_schema_default(ShiftingWAgg, type = "IntShiftWAgg")
method_schema_default(ShiftingWAgg, type = "DistShiftWAgg")
method_schema_default(ShiftingWAgg, type = "DistIntShiftWAgg")
# Method Test Needing Additional Arguments --------------------------------
method_schema_linear_weights <- function(method_to_test, weights, type, name){
tbl <- data_ratings %>%
method_to_test(weights, type = {{type}} , name = {{name}}, percent_toggle = TRUE)
test_that("column `method` exists", {
expect_col_exists(
tbl,
columns = vars(method),
threshold = 1
)
})
test_that("column `paper_id` exists", {
expect_col_exists(
tbl,
columns = vars(paper_id),
threshold = 1
)
})
test_that("column `cs` exists", {
expect_col_exists(
tbl,
columns = vars(cs),
threshold = 1
)
})
test_that("column `n_experts` exists", {
expect_col_exists(
tbl,
columns = vars(n_experts),
threshold = 1
)
})
test_that("values in `n_experts` should be between `0` and `25`", {
expect_col_vals_between(
tbl,
columns = vars(n_experts),
left = 0,
right = 25,
threshold = 1
)
})
test_that("values in `cs` should be between `0` and `1`", {
expect_col_vals_between(
tbl,
columns = vars(cs),
left = 0,
right = 1,
threshold = 1
)
})
test_that("column `method` is of type: character", {
expect_col_is_character(
tbl,
columns = vars(method),
threshold = 1
)
})
test_that("column `paper_id` is of type: character", {
expect_col_is_character(
tbl,
columns = vars(paper_id),
threshold = 1
)
})
test_that("column `n_experts` is of type: integer", {
expect_col_is_integer(
tbl,
columns = vars(n_experts),
threshold = 1
)
})
test_that("all values in `method` should not be NULL", {
expect_col_vals_not_null(
tbl,
columns = vars(method),
threshold = 1
)
})
test_that("all values in `paper_id` should not be NULL", {
expect_col_vals_not_null(
tbl,
columns = vars(paper_id),
threshold = 1
)
})
test_that("all values in `cs` should not be NULL", {
expect_col_vals_not_null(
tbl,
columns = vars(cs),
threshold = 1
)
})
test_that("all values in `n_experts` should not be NULL", {
expect_col_vals_not_null(
tbl,
columns = vars(n_experts),
threshold = 1
)
})
}
# LinearWAgg Additional Arguments -----------------------------------------
method_schema_linear_weights(LinearWAgg,
weights = data_supp_quiz %>%
dplyr::rename(weight = quiz_score),
type = "Participant_LO",
name = "QuizWAgg")
#
#
# method_schema_linear_weights(LinearWAgg,
# weights = data_ratings %>%
# dplyr::filter(element == "three_point_best",
# round == "round_2") %>%
# dplyr::select(paper_id,
# user_name,
# timestamp) %>%
# dplyr::group_by(user_name) %>%
# dplyr::arrange(timestamp) %>%
# dplyr::mutate(claim_count = dplyr::row_number()) %>%
# dplyr::ungroup() %>%
# dplyr::mutate(weight = log(claim_count) + 1) %>%
# dplyr::select(paper_id,
# user_name,
# weight),
# type = "Judgement",
# name = "ExperienceWAgg")
method_schema_linear_weights(LinearWAgg,
weights = data_ratings %>%
dplyr::filter(question == "comprehension",
round == "round_2") %>%
dplyr::select(paper_id,
user_name,
value) %>%
dplyr::rename(weight = value),
type = "Judgement",
name = "CompWAgg")
method_schema_linear_weights(LinearWAgg,
weights = data_justifications %>%
dplyr::mutate(n_words = stringr::str_count(justification, pattern = " ") + 1) %>%
dplyr::group_by(user_name,
paper_id) %>%
dplyr::summarise(word_count = sum(n_words,
na.rm = TRUE)) %>%
dplyr::select(paper_id,
user_name,
word_count) %>%
dplyr::rename(weight = word_count),
type = "Judgement",
name = "EngWAgg")
# Reasoning ---------------------------------------------------------------
method_schema_reasoning <- function(method_to_test, reasons, type, name, beta_transform){
tbl <- data_ratings %>%
method_to_test(reasons, type = {{type}} , name = {{name}}, beta_transform = {{beta_transform}}, percent_toggle = TRUE)
test_that("column `method` exists", {
expect_col_exists(
tbl,
columns = vars(method),
threshold = 1
)
})
test_that("column `paper_id` exists", {
expect_col_exists(
tbl,
columns = vars(paper_id),
threshold = 1
)
})
test_that("column `cs` exists", {
expect_col_exists(
tbl,
columns = vars(cs),
threshold = 1
)
})
test_that("column `n_experts` exists", {
expect_col_exists(
tbl,
columns = vars(n_experts),
threshold = 1
)
})
test_that("values in `n_experts` should be between `0` and `25`", {
expect_col_vals_between(
tbl,
columns = vars(n_experts),
left = 0,
right = 25,
threshold = 1
)
})
test_that("values in `cs` should be between `0` and `1`", {
expect_col_vals_between(
tbl,
columns = vars(cs),
left = 0,
right = 1,
threshold = 1
)
})
test_that("column `method` is of type: character", {
expect_col_is_character(
tbl,
columns = vars(method),
threshold = 1
)
})
test_that("column `paper_id` is of type: character", {
expect_col_is_character(
tbl,
columns = vars(paper_id),
threshold = 1
)
})
test_that("column `n_experts` is of type: integer", {
expect_col_is_integer(
tbl,
columns = vars(n_experts),
threshold = 1
)
})
test_that("all values in `method` should not be NULL", {
expect_col_vals_not_null(
tbl,
columns = vars(method),
threshold = 1
)
})
test_that("all values in `paper_id` should not be NULL", {
expect_col_vals_not_null(
tbl,
columns = vars(paper_id),
threshold = 1
)
})
test_that("all values in `cs` should not be NULL", {
expect_col_vals_not_null(
tbl,
columns = vars(cs),
threshold = 1
)
})
test_that("all values in `n_experts` should not be NULL", {
expect_col_vals_not_null(
tbl,
columns = vars(n_experts),
threshold = 1
)
})
}
method_schema_reasoning(ReasoningWAgg,
reasons = data_supp_reasons,
type = "ReasonWAgg",
name = "ReasonWAgg",
beta_transform = FALSE)
method_schema_reasoning(ReasoningWAgg,
reasons = data_supp_reasons,
type = "ReasonWAgg2",
name = "ReasonWAgg2",
beta_transform = FALSE)
method_schema_reasoning(ReasoningWAgg,
reasons = data_supp_reasons,
type = "ReasonWAgg",
name = "BetaReasonWAgg",
beta_transform = TRUE)
method_schema_reasoning(ReasoningWAgg,
reasons = data_supp_reasons,
type = "ReasonWAgg2",
name = "BetaReasonWAgg2",
beta_transform = TRUE)
# Bayes --------------------------------------------------------------------
method_schema_bays <- function(method_to_test, priors, type, name){
tbl <- data_ratings %>%
method_to_test(priors, type = {{type}} , name = {{name}}, percent_toggle = TRUE)
test_that("column `method` exists", {
expect_col_exists(
tbl,
columns = vars(method),
threshold = 1
)
})
test_that("column `paper_id` exists", {
expect_col_exists(
tbl,
columns = vars(paper_id),
threshold = 1
)
})
test_that("column `cs` exists", {
expect_col_exists(
tbl,
columns = vars(cs),
threshold = 1
)
})
test_that("column `n_experts` exists", {
expect_col_exists(
tbl,
columns = vars(n_experts),
threshold = 1
)
})
test_that("values in `n_experts` should be between `0` and `25`", {
expect_col_vals_between(
tbl,
columns = vars(n_experts),
left = 0,
right = 25,
threshold = 1
)
})
test_that("values in `cs` should be between `0` and `1`", {
expect_col_vals_between(
tbl,
columns = vars(cs),
left = 0,
right = 1,
threshold = 1
)
})
test_that("column `method` is of type: character", {
expect_col_is_character(
tbl,
columns = vars(method),
threshold = 1
)
})
test_that("column `paper_id` is of type: character", {
expect_col_is_character(
tbl,
columns = vars(paper_id),
threshold = 1
)
})
test_that("column `n_experts` is of type: integer", {
expect_col_is_integer(
tbl,
columns = vars(n_experts),
threshold = 1
)
})
test_that("all values in `method` should not be NULL", {
expect_col_vals_not_null(
tbl,
columns = vars(method),
threshold = 1
)
})
test_that("all values in `paper_id` should not be NULL", {
expect_col_vals_not_null(
tbl,
columns = vars(paper_id),
threshold = 1
)
})
test_that("all values in `cs` should not be NULL", {
expect_col_vals_not_null(
tbl,
columns = vars(cs),
threshold = 1
)
})
test_that("all values in `n_experts` should not be NULL", {
expect_col_vals_not_null(
tbl,
columns = vars(n_experts),
threshold = 1
)
})
}
# method_schema_bays(BayesianWAgg, priors = NULL, type = "BayTriVar", name = "BayTriVar")
# method_schema_bays(BayesianWAgg, priors = data_supp_priors, type = "BayPRIORsAgg", name = "BayTriVar")
# Extreme Wag -------------------------------------------------------------
method_schema_extreme <- function(method_to_test, type, name, cutoff_lower, cutoff_upper){
tbl <- data_ratings %>%
method_to_test(type = {{type}} , name = {{name}}, cutoff_lower = {{cutoff_lower}}, cutoff_upper = {{cutoff_upper}}, percent_toggle = TRUE)
test_that("column `method` exists", {
expect_col_exists(
tbl,
columns = vars(method),
threshold = 1
)
})
test_that("column `paper_id` exists", {
expect_col_exists(
tbl,
columns = vars(paper_id),
threshold = 1
)
})
test_that("column `cs` exists", {
expect_col_exists(
tbl,
columns = vars(cs),
threshold = 1
)
})
test_that("column `n_experts` exists", {
expect_col_exists(
tbl,
columns = vars(n_experts),
threshold = 1
)
})
test_that("values in `n_experts` should be between `0` and `25`", {
expect_col_vals_between(
tbl,
columns = vars(n_experts),
left = 0,
right = 25,
threshold = 1
)
})
test_that("values in `cs` should be between `0` and `1`", {
expect_col_vals_between(
tbl,
columns = vars(cs),
left = 0,
right = 1,
threshold = 1
)
})
test_that("column `method` is of type: character", {
expect_col_is_character(
tbl,
columns = vars(method),
threshold = 1
)
})
test_that("column `paper_id` is of type: character", {
expect_col_is_character(
tbl,
columns = vars(paper_id),
threshold = 1
)
})
test_that("column `n_experts` is of type: integer", {
expect_col_is_integer(
tbl,
columns = vars(n_experts),
threshold = 1
)
})
test_that("all values in `method` should not be NULL", {
expect_col_vals_not_null(
tbl,
columns = vars(method),
threshold = 1
)
})
test_that("all values in `paper_id` should not be NULL", {
expect_col_vals_not_null(
tbl,
columns = vars(paper_id),
threshold = 1
)
})
test_that("all values in `cs` should not be NULL", {
expect_col_vals_not_null(
tbl,
columns = vars(cs),
threshold = 1
)
})
test_that("all values in `n_experts` should not be NULL", {
expect_col_vals_not_null(
tbl,
columns = vars(n_experts),
threshold = 1
)
})
}
method_schema_extreme(ExtremisationWAgg,
type = "BetaArMean",
name = "BetaArMean",
cutoff_lower = NULL,
cutoff_upper = NULL)
method_schema_extreme(ExtremisationWAgg,
type = "BetaArMean2",
name = "BetaArMean2",
cutoff_lower = 0.4,
cutoff_upper = 0.6)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.