knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 8, fig.height = 5.75, out.width = "95%" ) options(digits = 3)
The agua
package provides tidymodels interface to the H2O platform and the h2o R package. It has two main components
new parsnip engine 'h2o'
for the following models:
linear_reg()
, logistic_reg()
, poisson_reg()
, multinom_reg()
: All fit penalized generalized linear models. If the model parameters penalty
and mixture
are not specified, h2o will internally search for the optimal regularization settings.
boost_tree()
: . Fits boosted trees via xgboost. Use h2o::h2o.xgboost.available()
to see if h2o's xgboost is supported on your machine. For classical gradient boosting, use the 'h2o_gbm'
engine.
rand_forest()
: Random forest models.
naive_Bayes()
: Naive Bayes models.
rule_fit()
: RuleFit models.
mlp()
: Multi-layer feedforward neural networks.
auto_ml()
: Automatic machine learning.
Infrastructure for the tune package, see Tuning with agua for more details.
All supported models can accept an additional engine argument validation
, which is a number between 0 and 1 specifying the proportion of data reserved as validation set. This can used by h2o for performance assessment and potential early stopping.
'h2o'
engineAs an example, we will fit a random forest model to the concrete
data. This will be a regression model with the outcome being the compressive strength of concrete mixtures.
library(tidymodels) library(agua) library(ggplot2) tidymodels_prefer() theme_set(theme_bw()) # start h2o server h2o_start() data(concrete, package = "modeldata") concrete <- concrete %>% group_by(across(-compressive_strength)) %>% summarize(compressive_strength = mean(compressive_strength), .groups = "drop") concrete #> # A tibble: 992 × 9 #> cement blast_furn…¹ fly_ash water super…² coars…³ fine_…⁴ age compr…⁵ #> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <dbl> #> 1 102 153 0 192 0 887 942 3 4.57 #> 2 102 153 0 192 0 887 942 7 7.68 #> 3 102 153 0 192 0 887 942 28 17.3 #> 4 102 153 0 192 0 887 942 90 25.5 #> 5 108. 162. 0 204. 0 938. 849 3 2.33 #> 6 108. 162. 0 204. 0 938. 849 7 7.72 #> 7 108. 162. 0 204. 0 938. 849 28 20.6 #> 8 108. 162. 0 204. 0 938. 849 90 29.2 #> 9 116 173 0 192 0 910. 892. 3 6.28 #> 10 116 173 0 192 0 910. 892. 7 10.1 #> # … with 982 more rows, and abbreviated variable names #> # ¹blast_furnace_slag, ²superplasticizer, ³coarse_aggregate, #> # ⁴fine_aggregate, ⁵compressive_strength
Note that we need to call h2o_start()
or h2o::h2o.init()
to start the h2o instance. The h2o server handles computations related to estimation and prediction, and passes the results back to R. agua takes care of data conversion and error handling, it also tries to store as least objects on the server as possible. The h2o server will automatically terminate once R session is closed. You can use h2o::h2o.removeAll()
to remove all server-side objects and h2o::h2o.shutdown()
to manually stop the server.
The rest of the syntax of model fitting and prediction are identical to the usage of any other engine in tidymodels.
set.seed(1501) concrete_split <- initial_split(concrete, strata = compressive_strength) concrete_train <- training(concrete_split) concrete_test <- testing(concrete_split) rf_spec <- rand_forest(mtry = 3, trees = 500) %>% set_engine("h2o", histogram_type = "Random") %>% set_mode("regression") normalized_rec <- recipe(compressive_strength ~ ., data = concrete_train) %>% step_normalize(all_predictors()) rf_wflow <- workflow() %>% add_model(rf_spec) %>% add_recipe(normalized_rec) rf_fit <- fit(rf_wflow, data = concrete_train) rf_fit #> ══ Workflow [trained] ════════════════════════════════════════════════════ #> Preprocessor: Recipe #> Model: rand_forest() #> #> ── Preprocessor ────────────────────────────────────────────────────────── #> 1 Recipe Step #> #> • step_normalize() #> #> ── Model ───────────────────────────────────────────────────────────────── #> Model Details: #> ============== #> #> H2ORegressionModel: drf #> Model ID: DRF_model_R_1665503649643_6 #> Model Summary: #> number_of_trees number_of_internal_trees model_size_in_bytes min_depth #> 1 500 500 2652880 15 #> max_depth mean_depth min_leaves max_leaves mean_leaves #> 1 20 17.97600 375 450 417.48000 #> #> #> H2ORegressionMetrics: drf #> ** Reported on training data. ** #> ** Metrics reported on Out-Of-Bag training samples ** #> #> MSE: 26.5 #> RMSE: 5.15 #> MAE: 3.7 #> RMSLE: 0.169 #> Mean Residual Deviance : 26.5
predict(rf_fit, new_data = concrete_test) #> # A tibble: 249 × 1 #> .pred #> <dbl> #> 1 6.42 #> 2 9.54 #> 3 9.20 #> 4 25.5 #> 5 6.60 #> 6 28.6 #> 7 10.0 #> 8 31.9 #> 9 12.1 #> 10 11.4 #> # … with 239 more rows
Here, we specify the engine argument histogram_type = "Random"
to use the extremely randomized trees (XRT) algorithm. For all available engine arguments, consult the engine specific help page for "h2o" of that model. For instance, the h2o link in the help page of rand_forest()
shows that it uses h2o::h2o.randomForest()
, whose arguments can be passed in as engine arguments in set_engine()
.
You can also use fit_resamples()
with h2o models.
concrete_folds <- vfold_cv(concrete_train, strata = compressive_strength) fit_resamples(rf_wflow, resamples = concrete_folds) #> # Resampling results #> # 10-fold cross-validation using stratification #> # A tibble: 10 × 4 #> splits id .metrics .notes #> <list> <chr> <list> <list> #> 1 <split [667/76]> Fold01 <tibble [2 × 4]> <tibble [0 × 3]> #> 2 <split [667/76]> Fold02 <tibble [2 × 4]> <tibble [0 × 3]> #> 3 <split [667/76]> Fold03 <tibble [2 × 4]> <tibble [0 × 3]> #> 4 <split [667/76]> Fold04 <tibble [2 × 4]> <tibble [0 × 3]> #> 5 <split [667/76]> Fold05 <tibble [2 × 4]> <tibble [0 × 3]> #> 6 <split [668/75]> Fold06 <tibble [2 × 4]> <tibble [0 × 3]> #> 7 <split [671/72]> Fold07 <tibble [2 × 4]> <tibble [0 × 3]> #> 8 <split [671/72]> Fold08 <tibble [2 × 4]> <tibble [0 × 3]> #> 9 <split [671/72]> Fold09 <tibble [2 × 4]> <tibble [0 × 3]> #> 10 <split [671/72]> Fold10 <tibble [2 × 4]> <tibble [0 × 3]>
Variable importance scores can be visualized by the vip package.
library(vip) rf_fit %>% extract_fit_parsnip() %>% vip()
knitr::include_graphics("../man/figures/vip.png")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.