Description Usage Arguments Examples
View source: R/inprocessing_prejudice_remover.R
Prejudice remover is an in-processing technique that adds a discrimination-aware regularization term to the learning objective
| 1 | prejudice_remover(eta=1.0, sensitive_attr='',class_attr='')
 | 
| eta | fairness penalty parameter | 
| sensitive_attr | name of protected attribute | 
| class_attr | label name | 
| 1 2 3 4 5 6 | # An example using the Adult Dataset
load_aif360_lib()
ad <- adult_dataset()
model <- prejudice_remover(class_attr = "income-per-year", sensitive_attr = "race")
model$fit(ad)
ad_pred <- model$predict(ad)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.