Description Usage Arguments Examples
View source: R/inprocessing_prejudice_remover.R
Prejudice remover is an in-processing technique that adds a discrimination-aware regularization term to the learning objective
1  | prejudice_remover(eta=1.0, sensitive_attr='',class_attr='')
 | 
eta | 
 fairness penalty parameter  | 
sensitive_attr | 
 name of protected attribute  | 
class_attr | 
 label name  | 
1 2 3 4 5 6  | # An example using the Adult Dataset
load_aif360_lib()
ad <- adult_dataset()
model <- prejudice_remover(class_attr = "income-per-year", sensitive_attr = "race")
model$fit(ad)
ad_pred <- model$predict(ad)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.