Description Usage Arguments Examples
View source: R/preprocessing_disparate_impact_remover.R
Disparate impact remover is a preprocessing technique that edits feature values increase group fairness while preserving rank-ordering within groups
1 | disparate_impact_remover(repair_level, sensitive_attribute)
|
repair_level |
Repair amount. 0.0 is no repair while 1.0 is full repair. |
sensitive_attribute |
Single protected attribute with which to do repair. |
1 2 3 4 5 6 7 8 9 10 11 | # An example using the Adult Dataset
load_aif360_lib()
ad <- adult_dataset()
p <- list("race", 1)
u <- list("race", 0)
di <- disparate_impact_remover(repair_level = 1.0, sensitive_attribute = "race")
rp <- di$fit_transform(ad)
di_2 <- disparate_impact_remover(repair_level = 0.8, sensitive_attribute = "race")
rp_2 <- di_2$fit_transform(ad)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.