Nothing
############################################################################
##################### alleHap DEMONSTRATION #######################
######################################
# This demo shows the usual workflow of the alleHap in which examples
# of the main functions usage will be secuentially introduced.
library(alleHap)
readline(prompt="Press [enter] to see the DATA LOADING stage")
############################# Ia. DATA LOADING #############################
## The data to be loaded must be structured in .ped format and families must
## comprise by parent-offspring pedigrees.
## As default, alleLoader shows a summary about the loaded data.
readline(prompt="Press [enter] to see the loading of a dataset with alphabetical alleles")
# The first example is a dataset with alphabetical alleles (A,C,G,T)
example1 <- file.path(find.package("alleHap"), "examples", "example1.ped")
example1Alls <- alleLoader(example1)
head(example1Alls[,1:12])
readline(prompt="Press [enter] to see the loading of a dataset containing numerical alleles")
## As second example, a dataset with numerical alleles is shown
example2 <- file.path(find.package("alleHap"), "examples", "example2.ped")
example2Alls <- alleLoader(example2)
head(example2Alls)
readline(prompt="Press [enter] to see the DATA SIMULATION stage")
########################## Ib. DATA SIMULATION #############################
## Alternatively, you can use alleHap to simulate biallelic pedigree databases.
## For this purpose you only need the alleSimulator function.
## As default, alleSimulator shows a summary about the simulated data.
readline(prompt="Press [enter] to see the generation of simulated dataset")
## Generation of 5 simulated families with 2 children per family and 10 markers
simulatedFams <- alleSimulator(5,2,10) # List with simulated alleles and haplotypes
head(simulatedFams[[1]]) # Alleles (genotypes) of the simulated families
head(simulatedFams[[2]]) # Haplotypes of the simulated families
readline(prompt="Press [enter] to see the DATA IMPUTATION stage")
########################## II. DATA IMPUTATION #############################
## Once data is properly loaded (or simulated), the imputation of missing alleles
## from a dataset composed by nuclear families, can be deployed.
## As default, alleImputer does not show a summary about the imputed data.
readline(prompt="Press [enter] to see the imputation of families containing parental missing data")
## Imputation of families containing parental missing data
simulatedFams <- alleSimulator(10, 4, 6, missParProb=0.2)
famsAlls <- simulatedFams[[1]] # Original data
alleImputer(famsAlls) # Imputed alleles (genotypes)
readline(prompt="Press [enter] to see the imputation of families containing offspring missing data")
## Imputation of families containing offspring missing data
datasetAlls <- alleSimulator(10, 4, 6, missOffProb=0.2)
famsAlls <- simulatedFams[[1]] # Original data
alleImputer(famsAlls) # Imputed alleles (genotypes)
readline(prompt="Press [enter] to see the Imputation of a family marker containing missing values in one parent and one child")
## Imputation of a family marker containing missing values in one parent and one child
infoFam <- data.frame(famID="FAM03",indID=1:5,patID=c(0,0,1,1,1),
matID=c(0,0,2,2,2),sex=c(1,2,1,2,1),phenot=0)
mkr <- rbind(father=c(NA,NA),mother=c(1,3),child1=c(1,1),child2=c(2,3),child3=c(NA,NA))
colnames(mkr) <- c("Mkr1_1","Mkr1_2")
famMkr <- cbind(infoFam,mkr) # Original data
alleImputer(famMkr, dataSummary = TRUE) # Imputed alleles (genotypes)
readline(prompt="Press [enter] to see the DATA HAPLOTYPING stage")
########################## III. DATA HAPLOTYPING #############################
## The final step is the haplotyping of a dataset composed by several families.
## As default, alleHaplotyper does not show a summary about the imputed data.
readline(prompt="Press [enter] to see the haplotype reconstruction for 3 families without missing data")
## Haplotype reconstruction for 3 families without missing data.
simulatedFams <- alleSimulator(3, 3, 6)
famsList <- alleHaplotyper(simulatedFams[[1]]) # List containing families' alleles and haplotypes
famsList$haplotypes # Reconstructed haplotypes
readline(prompt="Press [enter] to see the haplotype reconstruction of a family containing missing data in a parent")
## Haplotype reconstruction of a family containing missing data in a parent.
infoFam <- data.frame(famID="FAM002",indID=1:6,patID=c(0,0,1,1,1,1),matID=c(0,0,2,2,2,2),
sex=c(1,2,1,2,1,2),phenot=c(2,1,1,2,1,2))
Mkrs <- rbind(c(1,4,2,5,3,6),rep(NA,6),c(1,7,2,3,3,2),c(4,7,5,3,6,2),c(1,1,2,2,3,3),c(1,4,2,5,3,6))
colnames(Mkrs) <- c("Mk1_1","Mk1_2","Mk2_1","Mk2_2","Mk3_1","Mk3_2")
family <- cbind(infoFam,Mkrs)
famList <- alleHaplotyper(family) # List containing family's alleles and haplotypes
family # Original data
famList$reImputedAlls # Re-imputed alleles
famList$haplotypes # Reconstructed haplotypes
readline(prompt="Press [enter] to see the haplotype reconstruction from the previous loaded PED file")
## Haplotype reconstruction from a PED file
pedFamList <- alleHaplotyper(example1Alls, dataSummary = TRUE)
head(example1Alls[,1:20]) # Original data
head(pedFamList$reImputedAlls[,1:20]) # Re-imputed alleles
head(pedFamList$haplotypes) # Reconstructed haplotypes
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.