Description Usage Arguments Value Author(s) References See Also Examples
Given the parameters of a logistic distribution, aout.logis identifies α-outliers in a given data set.
| 1 | aout.logis(data, param, alpha = 0.1, hide.outliers = FALSE)
 | 
| data | a vector. The data set to be examined. | 
| param | a vector. Contains the parameters of the logistic distribution: μ, σ. | 
| alpha | an atomic vector. Determines the maximum amount of probability mass the outlier region may contain. Defaults to 0.1. | 
| hide.outliers | boolean. Returns the outlier-free data if set to  | 
Data frame of the input data and an index named is.outlier that flags the outliers with TRUE. If hide.outliers is set to TRUE, a simple vector of the outlier-free data.
A. Rehage
Balakrishnan, N. (1992) Maximum likelihood estimation based on complete and type II censored samples. In N. Balakrishnan (Ed.): Handbook of the Logistic Distribution. Dekker, New York, 49-78.
Gather, U.; Kuhnt, S.; Pawlitschko, J. (2003) Concepts of outlyingness for various data structures. In J. C. Misra (Ed.): Industrial Mathematics and Statistics. New Delhi: Narosa Publishing House, 545-585.
| 1 2 3 | # Data example from Balakrishnan (1967)
lifetime <- c(785, 855, 905, 918, 919, 920, 929, 936, 948, 950)
aout.logis(lifetime, c(949.9, 63.44))
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.