aout.logis: Find alpha-outliers in logistic data

Description Usage Arguments Value Author(s) References See Also Examples

View source: R/aout.logis.R

Description

Given the parameters of a logistic distribution, aout.logis identifies α-outliers in a given data set.

Usage

1
aout.logis(data, param, alpha = 0.1, hide.outliers = FALSE)

Arguments

data

a vector. The data set to be examined.

param

a vector. Contains the parameters of the logistic distribution: μ, σ.

alpha

an atomic vector. Determines the maximum amount of probability mass the outlier region may contain. Defaults to 0.1.

hide.outliers

boolean. Returns the outlier-free data if set to TRUE. Defaults to FALSE.

Value

Data frame of the input data and an index named is.outlier that flags the outliers with TRUE. If hide.outliers is set to TRUE, a simple vector of the outlier-free data.

Author(s)

A. Rehage

References

Balakrishnan, N. (1992) Maximum likelihood estimation based on complete and type II censored samples. In N. Balakrishnan (Ed.): Handbook of the Logistic Distribution. Dekker, New York, 49-78.

Gather, U.; Kuhnt, S.; Pawlitschko, J. (2003) Concepts of outlyingness for various data structures. In J. C. Misra (Ed.): Industrial Mathematics and Statistics. New Delhi: Narosa Publishing House, 545-585.

See Also

dlogis

Examples

1
2
3
# Data example from Balakrishnan (1967)
lifetime <- c(785, 855, 905, 918, 919, 920, 929, 936, 948, 950)
aout.logis(lifetime, c(949.9, 63.44))

alphaOutlier documentation built on May 30, 2017, 8:11 a.m.