pop | R Documentation |
Classification: Computing an Optimal Partition from Weighted Categorical Variables or from an Array of Signed Similarities.
pop(x,fmbvr=TRUE,triabs=TRUE,allsol=TRUE)
x |
A dissimilarity matrix |
fmbvr |
Logical, TRUE: look for the exact solution |
triabs |
Logical, TRUE: try to init with absolute values |
allsol |
Logical, TRUE all solutions, FALSE only one solution |
Michel Petitjean, http://petitjeanmichel.free.fr/itoweb.petitjean.class.html
R port by Antoine Lucas,
Theory is explained at http://petitjeanmichel.free.fr/itoweb.petitjean.class.html
Marcotorchino F. Agr\'egation des similarit\'es en classification automatique. Th\'ese de Doctorat d'Etat en Math\'ematiques, Universit\'e Paris VI, 25 June 1981.
Petitjean M. Agr\'egation des similarit\'es: une solution oubli\'ee. RAIRO Oper. Res. 2002,36[1],101-108.
## pop from a data matrix
data <-
matrix(c(1,1,1,1,1
,1,2,1,2,1
,2,3,2,3,2
,2,4,3,3,2
,1,2,4,2,1
,2,3,2,3,1),ncol=5,byrow=TRUE)
pop(diss(data))
## pop from a dissimilarity matrix
d <-2 * matrix(c(9, 8, 5, 7, 7, 2
, 8, 9, 2, 5, 1, 7
, 5, 2, 9, 8, 7, 1
, 7, 5, 8, 9, 3, 2
, 7, 1, 7, 3, 9, 6
, 2, 7, 1, 2, 6, 9),ncol=6,byrow=TRUE) - 9
pop(d)
## Not run:
d <- 2 * matrix(c(57, 15, 11, 32, 1, 34, 4, 6, 17, 7
, 15, 57, 27, 35, 27, 27, 20, 24, 30, 15
, 11, 27, 57, 25, 25, 20, 34, 25, 17, 15
, 32, 35, 25, 57, 22, 44, 13, 22, 30, 11
, 1, 27, 25, 22, 57, 21, 28, 43, 20, 13
, 34, 27, 20, 44, 21, 57, 18, 27, 21, 8
, 4, 20, 34, 13, 28, 18, 57, 31, 28, 13
, 6, 24, 25, 22, 43, 27, 31, 57, 30, 15
, 17, 30, 17, 30, 20, 21, 28, 30, 57, 12
, 7, 15, 15, 11, 13, 8, 13, 15, 12, 57),ncol=10,byrow=TRUE) - 57
pop(d)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.