VarRob | R Documentation |
Compute a robust variance
varrob(x,h,D=NULL,kernel="gaussien")
x |
Matrix / data frame |
h |
Scalar: bandwidth of the Kernel |
kernel |
The kernel used. This must be one of '"gaussien"', '"quartic"', '"triweight"', '"epanechikov"' , '"cosinus"' or '"uniform"' |
D |
A product scalar matrix / une matrice de produit scalaire |
U
compute robust variance. U_n^{-1} = S_n^{-1} - 1/h V_n^{-1}
S_n=\frac{\sum_{i=1}^{n}K(||X_i||_{V_n^{-1}}/h)(X_i-\mu_n)(X_i-\mu_n)'}{\sum_{i=1}^nK(||X_i||_{V_n^{-1}}/h)}
with \mu_n
estimator of the mean.
K
compute a kernel.
A matrix
Antoine Lucas
H. Caussinus, S. Hakam, A. Ruiz-Gazen Projections revelatrices controlees: groupements et structures diverses. 2002, to appear in Rev. Statist. Appli.
acp princomp
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.