ammiBayes | R Documentation |
Run the AMMI Bayesian model for continuous data.
ammiBayes(Y=Y, Gen=Gen, Env=Env, Rep=Rep,
iterations=3000, jump=2, burn=500,
Var.error=0.5, Var.env=0.5, Var.gen=0.5,
chains=2)
Y |
Response variable vector |
Gen |
Genotype effects vector. Must be defined as factor |
Env |
Environmental effects vector. Must be defined as factor |
Rep |
Repetition vector. Must be defined as factor |
iterations |
Total of iterations after burnin and jumo |
jump |
Jump of iterations |
burn |
Initial burn |
Var.error |
Priori for the variance of error. Default is 0.5 |
Var.env |
Priori for the variance of environment. Default is 0.5 |
Var.gen |
Priori for the variance of genotype. Default is 0.5 |
chains |
Number of chains. See details. |
The code is run in parallel for linux SO. If you are using Windows, the execution of the code will be serially.
Luciano A. Oliveira
Carlos P. Silva
Cristian T. E. Mendes
Alessandra Q. Silva
Joel J. Nuvunga
Marcio Balestre
Julio S. S. Bueno-Filho
Fabio M. Correa
OLIVEIRA,L.A.; SILVA, C. P.; NUVUNGA, J. J.; SILVA, A. Q.; BALESTRE, M. Credible Intervals for Scores in the AMMI with Random Effects for Genotype. Crop Science, v. 55, p. 465-476, 2015. doi: https://doi.org/10.2135/cropsci2014.05.0369
SILVA, C. P.; OLIVEIRA, L. A.; NUVUNGA, J. J.; PAMPLONA, A. K. A.; BALESTRE, M. A Bayesian Shrinkage Approach for AMMI Models. Plos One, v. 10, p. e0131414, 2015. doi: https://doi.org/10.1371/journal.pone.0131414.
library(ammiBayes)
data(ammiData)
Env <- factor(ammiData$amb)
Rep <- factor(ammiData$rep)
Gen <- factor(ammiData$gen)
Y <- ammiData$prod
model <- ammiBayes(Y=Y, Gen=Gen, Env=Env, Rep=Rep, iter=10,
burn=1, jump=2, chains=2)
summary(model)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.