Description Usage Arguments Details Value Note Author(s) References See Also
Simulates the quincunx with “balls” (beans) falling through several layers
(denoted by triangles) and the distribution of the final locations at which
the balls hit is denoted by a histogram; quincunx()
is shows single
layer, and quincunx2()
is a two-stage version of the quincunx.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
balls |
number of balls |
layers |
number of layers |
pch.layers |
point character of layers; triangles ( |
pch.balls, col.balls, cex.balls |
point character, colors and magnification of balls |
The bean machine, also known as the quincunx or Galton box, is a device invented by Sir Francis Galton to demonstrate the law of error and the normal distribution.
When a ball falls through a layer, it can either go to the right or left side with the probability 0.5. At last the location of all the balls will show us the bell-shaped distribution.
A named vector: the frequency table for the locations of the balls. Note the names of the vector are the locations: 1.5, 2.5, ..., layers - 0.5.
The maximum number of animation frames is controlled by
ani.options('nmax')
as usual, but it is strongly recommended that
ani.options(nmax = balls + layers -2)
, in which case all the balls
will just fall through all the layers and there will be no redundant
animation frames.
Yihui Xie, Lijia Yu, and Keith ORourke
Examples at https://yihui.org/animation/example/quincunx/
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.