Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
set.seed(123)
## ----setup--------------------------------------------------------------------
library(anticlust)
## -----------------------------------------------------------------------------
library(palmerpenguins)
# First exclude cases with missing values
df <- na.omit(penguins)
head(df)
nrow(df)
## -----------------------------------------------------------------------------
numeric_vars <- df[, c("bill_length_mm", "bill_depth_mm", "flipper_length_mm", "body_mass_g")]
groups <- anticlustering(
numeric_vars,
K = 3,
categories = df$sex
)
## -----------------------------------------------------------------------------
table(groups, df$sex)
## -----------------------------------------------------------------------------
groups <- anticlustering(
numeric_vars,
K = 3,
categories = df$species
)
table(groups, df$species)
## -----------------------------------------------------------------------------
groups <- anticlustering(
numeric_vars,
K = 3,
categories = df[, c("species", "sex")]
)
table(groups, df$sex)
table(groups, df$species)
## -----------------------------------------------------------------------------
binary_categories <- categories_to_binary(df[, c("species", "sex")])
# see ?categories_to_binary
head(binary_categories)
## -----------------------------------------------------------------------------
groups <- anticlustering(
binary_categories,
K = 3,
method = "local-maximum",
objective = "variance",
repetitions = 10,
standardize = TRUE
)
table(groups, df$sex)
table(groups, df$species)
## -----------------------------------------------------------------------------
binary_categories <- categories_to_binary(df[, c("species", "sex")], use_combinations = TRUE)
groups <- anticlustering(
binary_categories,
K = 3,
method = "local-maximum",
objective = "variance",
repetitions = 10,
standardize = TRUE
)
table(groups, df$sex)
table(groups, df$species)
table(groups, df$sex, df$species)
## -----------------------------------------------------------------------------
final_groups <- anticlustering(
numeric_vars,
K = groups,
standardize = TRUE,
method = "local-maximum",
categories = df[, c("species", "sex")]
)
table(groups, df$sex)
table(groups, df$species)
mean_sd_tab(numeric_vars, final_groups)
## -----------------------------------------------------------------------------
final_groups <- anticlustering(
cbind(numeric_vars, binary_categories),
K = 3,
standardize = TRUE,
method = "local-maximum",
objective = "variance",
repetitions = 10
)
table(groups, df$sex)
table(groups, df$species)
mean_sd_tab(numeric_vars, final_groups)
## -----------------------------------------------------------------------------
final_groups <- anticlustering(
cbind(kplus_moment_variables(numeric_vars, T = 2), binary_categories),
K = 3,
method = "local-maximum",
objective = "variance",
repetitions = 10
)
table(groups, df$sex)
table(groups, df$species)
mean_sd_tab(numeric_vars, final_groups)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.