Nothing
library("anticlust")
# generate_partitions function correctly removes redundant partitions
for (K in 2:4) {
for (N in 4:10) {
if (N %% K != 0) {
next
}
permutations <- generate_partitions(N, K, TRUE)
partitions <- generate_partitions(N, K, FALSE)
# remove duplicates from permutations
permutations <- lapply(permutations, anticlust:::order_cluster_vector)
permutations <- permutations[!duplicated(permutations)]
expect_equal(permutations, partitions)
}
}
# analytical solution and generative functions result in same number of partitions
K <- 2
for (N in seq(4, 18, 2)) {
partitions <- generate_partitions(N, K, FALSE)
analytical_n <- n_partitions(N, K)
expect_equal(analytical_n, length(partitions))
}
K <- 3
for (N in seq(6, 12, 3)) {
partitions <- generate_partitions(N, K, FALSE)
analytical_n <- n_partitions(N, K)
expect_equal(analytical_n, length(partitions))
}
K <- 4
for (N in c(8, 12)) {
partitions <- generate_partitions(N, K, FALSE)
analytical_n <- n_partitions(N, K)
expect_equal(analytical_n, length(partitions))
}
K <- 5
for (N in c(5, 10)) {
partitions <- generate_partitions(N, K, FALSE)
analytical_n <- n_partitions(N, K)
expect_equal(analytical_n, length(partitions))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.