View source: R/apollo_varcov.R
| apollo_varcov | R Documentation |
Calculates the Hessian, variance-covariance matrix and standard errors of an Apollo model as defined by its likelihood function
and apollo_inputs list of settings. Performs automatic scaling for increased numeric stability.
apollo_varcov(apollo_beta, apollo_fixed, varcov_settings)
apollo_beta |
Named numeric vector. Names and values of parameters at which to calculate the covariance matrix. Values must not be scaled, and they must include any fixed parameter. |
apollo_fixed |
Character vector. Names of fixed parameters. |
varcov_settings |
List of settings defining the behaviour of this function. It must contain at least one of
the following:
|
It calculates the Hessian, variance-covariance, and standard errors at apollo_beta values of an
estimated model. At least one of the following settings must be provided (ordered by speed of computation): apollo_grad,
apollo_logLike, or (apollo_probabilities and apollo_inputs). If more than one is provided,
then the priority is: apollo_grad, apollo_logLike, (apollo_probabilities and apollo_inputs).
List with the following elements
apollo_beta: Named numerical vector. Parameter estimates (model$estimate, not scaled).
corrmat: Numerical matrix. Correlation between parameter estimates.
hessian: Numerical matrix. Hessian of the model at parameter estimates (model$estimate).
hessianScaling: Named numeric vector. Scales used on the paramaters to calculate the Hessian (non-fixed only).
methodsAttempted: Character vector. Name of methods attempted to calculate the Hessian.
methodUsed: Character. Name of method used to calculate the Hessian.
robcorrmat: Numerical matrix. Robust correlation between parameter estimates.
robse: Named numerical vector. Robust standard errors of parameter estimates.
robvarcov: Numerical matrix. Robust variance-covariance matrix.
se: Named numerical vector. Standard errors of parameter estimates.
varcov: Numerical matrix. Variance-covariance matrix.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.