mdash.fun: Mean of Gaussian process

mdash.funR Documentation

Mean of Gaussian process

Description

Returns the mean of the Gaussian process conditional on the observations and the hyperparameters

Usage

mdash.fun(x, D1, subsets, hpa, Vinv = NULL, use.Vinv = TRUE, z, basis)

Arguments

x

Point at which mean is desired

D1

Code design matrix for level 1 code

subsets

subsets object

hpa

Hyperparameter object

Vinv

Inverse of the variance matrix; if NULL, the function will calculate it

use.Vinv

Boolean, with default TRUE meaning to use the inverse of V and FALSE meaning to use a method that does not involve inverting V

z

observations

basis

Basis functions

Author(s)

Robin K. S. Hankin

References

M. C. Kennedy and A. O'Hagan 2000. “Predicting the output from a complex computer code when fast approximations are available” Biometrika, 87(1): pp1-13

Examples

data(toyapps)
mdash.fun(x=1:3,D1=D1.toy,subsets=subsets.toy,hpa=hpa.toy,z=z.toy,basis=basis.toy)

uu <- rbind(1:3,1,3:1,1:3)
rownames(uu) <- c("first","second","third","fourth")

mdash.fun(x=uu,D1=D1.toy,subsets=subsets.toy,hpa=hpa.toy,z=z.toy,basis=basis.toy)


approximator documentation built on Aug. 25, 2023, 1:07 a.m.