Nothing
# Load the required packages
library(testthat)
#library(arules)
library(arlclustering) # Adjust the package name as needed
# Test cases for arlc_clean_final_rules
test_that("arlc_clean_final_rules cleans the rules correctly", {
# Load example data
sample_gml_file <- system.file("extdata", "karate.gml", package = "arlclustering")
g <- arlc_get_network_dataset(sample_gml_file, "Karate Club")
trans <- arlc_gen_transactions(g$graph)
supportRange <- seq(0.1, 0.2, by = 0.1)
Conf <- 0.5
capture.output({ params <- arlc_get_apriori_thresholds(trans, supportRange, Conf) })
capture.output({ grossRules <- arlc_gen_gross_rules(trans, params$minSupp, params$minConf, 1, params$lenRules) })
nonRR_rules <- arlc_get_NonR_rules(grossRules$GrossRules)
NonRRSig_rules <- arlc_get_significant_rules(trans, nonRR_rules$FiltredRules)
# Check inputs
expect_type(NonRRSig_rules, "list")
expect_equal(NonRRSig_rules$TotFiltredRules, 50)
expect_s4_class(NonRRSig_rules$FiltredRules, "rules")
expect_named(NonRRSig_rules, c("TotFiltredRules", "FiltredRules"))
expect_true(NonRRSig_rules$TotFiltredRules <= length(nonRR_rules$FiltredRules))
expect_true(all(c("TotFiltredRules", "FiltredRules") %in% names(NonRRSig_rules)))
# Call the function with the synthetic rules
cleaned_rules <- arlc_clean_final_rules(NonRRSig_rules$FiltredRules)
# Check if the result is a list
expect_type(cleaned_rules, "list")
# Check if the elements of the list are numeric vectors
expect_true(all(sapply(cleaned_rules, is.numeric)))
# Check that the function runs without error for different inputs
expect_error(arlc_clean_final_rules(NonRRSig_rules$FiltredRules), NA)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.