Description Usage Arguments Value Examples
The output task allows to select model variables using a concise mini language. You can select variables by name or using one of the helper functions described below.
The selection of variables builds on the tidyselect package which implements a powerful variable selection language (see tidyselect::language). The following features are most relevant for the selection of model variables:
|
for selecting the union of several variables
c()
for combining selections
!
for taking the complement of a set of variables
In addition, you can select variables using a combination of the following helper functions:
vars_prms()
selects all model parameters
vars_data()
selects all data defined variables
vars_eta()
selects all eta variables
vars_nm_std()
selects the standard NONMEM variables DV, PRED, RES, WRES, IPREDI, IWRESI
vars_starts_with()
selects variables that start with a prefix
vars_matches()
selects variables that match a regular expression
1 2 3 4 5 6 7 8 9 10 11 | vars_prms(vars)
vars_data(vars)
vars_eta(vars)
vars_nm_std(vars)
vars_starts_with(match, vars)
vars_matches(match, vars)
|
vars |
A character vector of variable names (taken from the selection context) |
match |
A character vector to match against |
A selection context
1 2 3 4 5 6 7 8 9 | m <- model() +
input_variable("dose") +
prm_log_normal("emax", median = 10, var_log = 0.09) +
prm_log_normal("ed50", median = 50, var_log = 0.09) +
algebraic(effect~emax*dose/(ed50 + dose)) +
obs_proportional(~effect, var_prop = 1)
# output all model parameter and eta variables
render(m, tasks = tsk_output("prms", variables = vars_prms() | vars_eta()))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.