Description Usage Arguments Details Value Note Author(s) References Examples
View source: R/auc.para.bayes.R
Obtain the point estimate and the credible interval of the AUC using the Bayesian MCMC.
1 2 3 | auc.para.bayes(x, y, conf.level=0.95,
dist=c("normalDV", "normalEV", "exponential"),
nburn=1000, niter=10000, nthin=1, seed=100)
|
x |
a vector of observations from class P. |
y |
a vector of observations from class N. |
conf.level |
confidence level of the interval. The default is 0.95. |
dist |
the name of a parametric distribution. |
nburn |
number of burn-in. The default is 1000. |
niter |
number of iterations. The default is 10000. |
nthin |
number of thinnng interval. The default is 1. |
seed |
the seed. The default is 100. |
Use the Bayesian MCMC to estimate the parameters of the distributions and hence the AUC values.
Point estimate and lower and upper bounds of the CI of the AUC.
The observations from class P tend to have larger values then that from class N.
Dai Feng
Dai Feng, Giuliana Cortese, and Richard Baumgartner (2015) A comparison of confidence/credible interval methods for the area under the ROC curve for continuous diagnostic tests with small sample size. Statistical Methods in Medical Research DOI: 10.1177/0962280215602040
1 2 3 4 5 6 7 8 9 10 11 12 13 | #Example 1
data(petBrainGlioma)
y <- subset(petBrainGlioma, grade==1, select="FDG", drop=TRUE)
x <- subset(petBrainGlioma, grade==2, select="FDG", drop=TRUE)
auc.para.bayes(x, y, dist="exp")
#Example 2
data(petBrainGlioma)
y <- subset(petBrainGlioma, grade==1, select="ACE", drop=TRUE)
x <- subset(petBrainGlioma, grade==2, select="ACE", drop=TRUE)
auc.para.bayes(x, y, dist="normalDV")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.