plot_prediction: Predicted response vs Observed or Variable Values

View source: R/plot_prediction.R

plot_predictionR Documentation

Predicted response vs Observed or Variable Values

Description

Plot of predicted response vs observed or variable Values.

Usage

plot_prediction(object, ..., variable = "_y_", smooth = FALSE, abline = FALSE)

plotPrediction(object, ..., variable = NULL, smooth = FALSE, abline = FALSE)

Arguments

object

An object of class auditor_model_residual.

...

Other auditor_model_residual objects to be plotted together.

variable

Name of variable to order residuals on a plot. If variable="_y_", the data is ordered by a vector of actual response (y parameter passed to the explain function). If variable = "_y_hat_" the data on the plot will be ordered by predicted response. If variable = NULL, unordered observations are presented.

smooth

Logical, indicates whenever smooth line should be added.

abline

Logical, indicates whenever function y = x should be added. Works only with variable = "_y_" (which is a default option) or when variable equals actual response variable.

Value

A ggplot2 object.

Examples

dragons <- DALEX::dragons[1:100, ]

# fit a model
model_lm <- lm(life_length ~ ., data = dragons)

lm_audit <- audit(model_lm, data = dragons, y = dragons$life_length)

# validate a model with auditor
mr_lm <- model_residual(lm_audit)

# plot results
plot_prediction(mr_lm, abline = TRUE)
plot_prediction(mr_lm, variable = "height", smooth = TRUE)
plot(mr_lm, type = "prediction", abline = TRUE)

library(randomForest)
model_rf <- randomForest(life_length~., data = dragons)
rf_audit <- audit(model_rf, data = dragons, y = dragons$life_length)
mr_rf <- model_residual(rf_audit)
plot_prediction(mr_lm, mr_rf, variable = "height", smooth = TRUE)



auditor documentation built on Nov. 2, 2023, 6:13 p.m.