Nothing
context("common_workflow")
# basically checks that there is no error in a normal workflow.
test_that("AutoKeras for structured data workflow", {
skip_if(!reticulate::py_module_available("autokeras"))
library("keras")
# use the iris dataset as an example
set.seed(8818)
# balanced sample 80% for training
train_idxs <- unlist(by(seq_len(nrow(iris)), iris$Species, function(x) {
sample(x, length(x) * .8)
}))
train_data <- iris[train_idxs, ]
test_data <- iris[-train_idxs, ]
colnames(iris)
# Species will be the interest column to predict
train_file <- paste0(tempdir(), "/iris_train.csv")
write.csv(train_data, train_file, row.names = FALSE)
# file to predict, cant have the response "Species" column
test_file_to_predict <- paste0(tempdir(), "/iris_test_2_pred.csv")
write.csv(test_data[, -5], test_file_to_predict, row.names = FALSE)
test_file_to_eval <- paste0(tempdir(), "/iris_test_2_eval.csv")
write.csv(test_data, test_file_to_eval, row.names = FALSE)
# Initialize the structured data classifier
clf <- model_structured_data_classifier(max_trials = 2) %>% # It tries 2 different models
fit(train_file, "Species", epochs = 4)
expect_is(clf, "AutokerasModel")
# Predict with the best model
(predicted_y <- clf %>% predict(test_file_to_predict))
expect_is(clf, "AutokerasModel")
expect_true(nrow(predicted_y) == nrow(test_data))
# Evaluate the best model with testing data
clf %>% evaluate(test_file_to_eval, "Species")
expect_is(clf, "AutokerasModel")
# Get the best trained Keras model, to work with the keras R library
export_model(clf)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.