Nothing
# KERAS_WRAPPER -----------------------------------------------------------
KERAS_WRAPPER <- new.env()
#' KERAS_WRAPPER class environment
#'
#' @name KERAS_WRAPPER
#'
#' @description This is the class of keras wrapper,
#' inherited from [bandicoot::BASE]. It is an environment
#' with S3 class `bandicoot_oop`.
#'
#' @param keras_model Keras model. A trained computer vision model.
#' @param node_index Integer. An index indicating which node of the output layer
#' contains the visual signal strength. This is particularly useful
#' when the keras model has more than one output nodes.
#' @param env Environment. The instance environment.
#' @param init_call Call. Contents of the `..init_call..`. It is recommended to leave it
#' as default.
#' @return An instance environment.
#'
#' @details # Class information
#' ## Parent classes
#' * Direct:
#' * [bandicoot::BASE]
#'
#' ## New methods
#' * G:
#' * [KERAS_WRAPPER$get_input_height()]
#' * [KERAS_WRAPPER$get_input_width()]
#' * I:
#' * [KERAS_WRAPPER$image_to_array()]
#' * [KERAS_WRAPPER$..init..()]
#' * L:
#' * [KERAS_WRAPPER$list_layer_name()]
#' * P:
#' * [KERAS_WRAPPER$predict()]
#' * S:
#' * [KERAS_WRAPPER$..str..()]
#'
#' @export
KERAS_WRAPPER
#' @describeIn KERAS_WRAPPER Class constructor, same as `KERAS_WRAPPER$instantiate()`.
#' @export
keras_wrapper <- function(keras_model = NULL,
node_index = 1L,
env = new.env(parent = parent.frame()),
init_call = sys.call()) {
KERAS_WRAPPER$instantiate(keras_model = keras_model,
node_index = node_index,
env = env,
init_call = init_call)
}
#' Initialization method
#'
#' @name KERAS_WRAPPER$..init..
#'
#' @description This function will be called after an instance is built. User
#' input will be stored in the environment.
#'
#' ## Usage
#' ```
#' KERAS_WRAPPER$..init..(keras_mod = NULL, node_index = 1L)
#' ```
#'
#' @param keras_mod Keras model. A trained computer vision model.
#' @param node_index Integer. An index indicating which node of the output layer
#' contains the visual signal strength. This is particularly useful
#' when the keras model has more than one output nodes.
#' @return Return the object itself.
#'
#' @examples
#' keras_wrapper()
#'
KERAS_WRAPPER$..init..
#' String representation of the object
#'
#' @name KERAS_WRAPPER$..str..
#'
#' @description This function returns a string representation of the object.
#'
#' ## Usage
#' ```
#' KERAS_WRAPPER$..str..()
#' ```
#' @return A string.
#'
#' @examples
#'
#' KERAS_WRAPPER$..str..()
#'
#' wrapper <- keras_wrapper()
#' wrapper$..str..()
KERAS_WRAPPER$..str..
#' Predict visual signal strength
#'
#' @name KERAS_WRAPPER$predict
#'
#' @description This function predicts the visual signal strength using the
#' provided keras model, input array and optional auxiliary input array.
#'
#' ## Usage
#' ```
#' KERAS_WRAPPER$predict(
#' input_array,
#' auxiliary = NULL,
#' keras_model = self$keras_model,
#' node_index = self$node_index,
#' extract_featrue_from_layer = NULL
#' )
#' ```
#'
#' @param input_array Array/Numpy array. An input array, usually of the
#' shape (batch_size, height, width, channels).
#' @param auxiliary Array/Data frame. An auxiliary input array of the
#' shape (batch_size, number_of_auxiliary_inputs). This is only needed if the
#' keras model takes multiple inputs.
#' @param keras_model Keras model. A trained computer vision model.
#' @param node_index Integer. An index indicating which node of the output layer
#' contains the visual signal strength. This is particularly useful
#' when the keras model has more than one output nodes.
#' @param extract_feature_from_layer Character/Integer. A layer name or an
#' integer layer index for extracting features from a layer.
#' @return A tibble. The first column is `vss` which is the prediction, the
#' rest of the columns are features extracted from a layer.
#'
#' @examples
#' keras_model <- try(get_keras_model("vss_phn_32"))
#' if (!inherits(keras_model, "try-error")) {
#' wrapper <- keras_wrapper(keras_model)
#'
#' # Provide one 32 * 32 RGB image and one vector of length 5 as input
#' wrapper$predict(input_array = array(255, dim = c(1, 32, 32, 3)),
#' auxiliary = matrix(1, ncol = 5))
#' }
#'
KERAS_WRAPPER$predict
#' Get keras model input image height
#'
#' @name KERAS_WRAPPER$get_input_height
#'
#' @description This function get the input image height (the input shape
#' is (batch_size, height, width, channels)) of a keras model.
#'
#' ## Usage
#' ```
#' KERAS_WRAPPER$get_input_height(keras_model = self$keras_model)
#' ```
#'
#' @param keras_model Keras model. A trained computer vision model.
#' @return An integer.
#'
#' @examples
#' keras_model <- try(get_keras_model("vss_phn_32"))
#' if (!inherits(keras_model, "try-error")) {
#' keras_wrapper(keras_model)$get_input_height()
#' }
#'
KERAS_WRAPPER$get_input_height
#' Get keras model input image width
#'
#' @name KERAS_WRAPPER$get_input_width
#'
#' @description This function get the input image width (the input shape
#' is (batch_size, height, width, channels)) of a keras model.
#'
#' ## Usage
#' ```
#' KERAS_WRAPPER$get_input_width(keras_model = self$keras_model)
#' ```
#'
#' @param keras_model Keras model. A trained computer vision model.
#' @return An integer.
#'
#' @examples
#' keras_model <- try(get_keras_model("vss_phn_32"))
#' if (!inherits(keras_model, "try-error")) {
#' keras_wrapper(keras_model)$get_input_width()
#' }
#'
KERAS_WRAPPER$get_input_width
#' Load an image as numpy array
#'
#' @name KERAS_WRAPPER$image_to_array
#'
#' @description This function loads an image from file and convert it to a
#' numpy array.
#'
#' ## Usage
#' ```
#' KERAS_WRAPPER$image_to_array(
#' path,
#' height = self$get_input_height(),
#' width = self$get_input_width()
#' )
#' ```
#'
#' @param path Character. Path to the image.
#' @param height Integer. Target height of the image.
#' @param width Integer. Target width of the image.
#' @return A numpy array.
#'
#' @examples
#' p <- ggplot2::ggplot(cars) + ggplot2::geom_point(ggplot2::aes(dist, speed))
#' path <- save_plot(p)
#' result <- try(KERAS_WRAPPER$image_to_array(path, 32L, 32L))
#' if (!inherits(result, "try-error")) {
#' result
#' }
#'
KERAS_WRAPPER$image_to_array
#' List all layer names
#'
#' @name KERAS_WRAPPER$list_layer_name
#'
#' @description This function list all layer names of a keras model.
#'
#' ## Usage
#' ```
#' KERAS_WRAPPER$list_layer_name(keras_model = self$keras_model)
#' ```
#'
#' @param keras_model Keras model. A trained computer vision model.
#' @return A vector of strings.
#'
#' @examples
#' keras_model <- try(get_keras_model("vss_phn_32"))
#' if (!inherits(keras_model, "try-error")) {
#' keras_wrapper(keras_model)$list_layer_name()
#' }
#'
KERAS_WRAPPER$image_to_array
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.