Description Details Author(s) References Examples
A collection of functions to analyse, visualize and interpret wind data and to calculate the potential energy production of wind turbines.
Wind power is a global source of energy which attracts a large share of investments in renewables. Project sites with high wind potential do not only minimise the financial risk but increase the efficiency in carbon footprint reduction. Hence a thorough productivity analysis of a wind project is essential, regarding both economic and environmental aspects. The evaluation of the potential of a site requires a wind resource assessment, which is best based on data gained by a local measurement campaign. A methodology of processing the measured data has been established, resulting in a better understanding of the wind conditions of a site and therefore a more reliable estimation of energy production.
bReeze
is a collection of widely used methods to analyse, visualise and interpret wind data. Wind resource analyses can subsequently be combined with characteristics of wind turbines to estimate the potential energy production on the investigated site.
Usually the data to be analysed are collected by meteorological masts (met masts) and averaged over ten minutes, but other time intervals are also processable.
bReeze
suggests three packages, written by other developers: RColorBrewer
(by Erich Neuwirth) provides nice colours for the graphics, XML
(by Duncan Temple Lang) provides xml parsing for power curve import and RgoogleMaps
(by Markus Loecher) provides simple site maps.
Try the examples below to check if bReeze
has been correctly installed. Any question and feedback is welcome via email to <christian.graul@gmail.com> or on GitHub.
Christian Graul and Carsten Poppinga
Maintainer: Christian Graul <christian.graul@gmail.com>
The following handbook gives a detailed thematic overview and is available online:
Brower, M., Marcus, M., Taylor, M., Bernadett, D., Filippelli, M., Beaucage, P., Hale, E., Elsholz, K., Doane, J., Eberhard, M., Tensen, J., Ryan, D. (2010) Wind Resource Assessment Handbook. http://www.renewablenrgsystems.com/TechSupport/~/media/Files/PDFs/wind_resource_handbook.ashx
Further references are given under the specific functions of the package.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | ## Not run:
# load example data
data("winddata", package="bReeze")
# create two datasets
set40 <- set(height=40, v.avg=winddata[,2], v.std=winddata[,5],
dir.avg=winddata[,14])
set30 <- set(height=30, v.avg=winddata[,6], v.std=winddata[,9],
dir.avg=winddata[,16])
# format time stamp
ts <- timestamp(timestamp=winddata[,1])
# create met mast object
metmast <- mast(timestamp=ts, set40=set40, set30=set30)
# plot time series of met mast signals
plot(metmast)
# calculate frequency and mean wind speed per wind direction sector
freq <- frequency(mast=metmast, v.set=1)
# plot frequency
plot(freq)
# calculate availability of pairs of wind speed and direction
availability(mast=metmast)
# calculate monthly means of wind speed
month.stats(mast=metmast)
# calculate turbulence intensity
turbulence(mast=metmast, turb.set=1)
# calculate weibull parameters
wb <- weibull(mast=metmast, v.set=1)
# calculate total wind energy content
energy(wb=wb)
# calculate wind profile
pf <- windprofile(mast=metmast, v.set=c(1,2), dir.set=1)
# import power curve
pc <- pc("Enercon_E126_7.5MW.pow")
# calculate annual energy production
aep <- aep(profile=pf, pc=pc, hub.h=135)
# plot AEP
plot(aep)
## End(Not run)
|
This is bReeze 0.4-3
Type changes("bReeze") to see changes/bug fixes, help(bReeze) for documentation
or citation("bReeze") for how to cite bReeze.
Attaching package: 'bReeze'
The following objects are masked from 'package:stats':
frequency, ts
The following object is masked from 'package:utils':
timestamp
Pattern found: %d.%m.%Y %H:%M
Frequency
wind speed total 0-5 5-10 10-15 15-20 >20
[m/s] [%] [%] [%] [%] [%] [%]
N 5.611 27.069 11.281 13.93 1.795 0.063
NNE 3.89 6.047 4.063 1.984
ENE 3.665 3.089 2.274 0.804 0.011
E 2.707 1.737 1.557 0.178 0.003
ESE 2.838 1.885 1.524 0.361
SSE 2.538 4.586 4.022 0.564
S 3.052 11.639 9.918 1.579 0.142
SSW 5.042 15.155 8.854 4.556 1.426 0.312 0.008
WSW 5.74 15.623 7.046 6.698 1.519 0.361
W 3.406 6.258 4.684 1.491 0.082
WNW 1.62 2.46 2.378 0.082
NNW 2.673 4.452 3.738 0.703 0.011
all 4.472 100 61.339 32.929 4.988 0.736 0.008
call: frequency(mast=metmast, v.set=1, dir.set=1, num.sectors=12, bins=c(0, 5, 10, 15, 20), subset=NA, digits=3, print=TRUE)
Availability for pairs of wind speed and direction
availability effective period total period
[%] [d] [d]
set40 93.8 253.8 270.5
set30 93.8 253.8 270.5
number of daily samples:
set40
% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2009-05 82.3 0 0 0 0 0 76 144 144 144 144 144 144 144 144 144 144
2009-06 100.0 143 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144
2009-07 100.0 143 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144
2009-08 100.0 143 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144
2009-09 100.0 143 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144
2009-10 99.8 143 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144
2009-11 44.7 143 144 144 144 144 144 144 144 144 144 144 144 144 60 0 0
2009-12 99.8 137 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144
2010-01 100.0 143 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2009-05 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144
2009-06 144 144 144 144 144 144 144 144 144 144 144 144 144 144
2009-07 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144
2009-08 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144
2009-09 144 144 144 144 144 144 144 144 144 144 144 144 144 144
2009-10 144 144 144 144 144 144 144 144 144 144 144 144 144 144 138
2009-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2009-12 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144
2010-01 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144
set30
% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2009-05 82.3 0 0 0 0 0 76 144 144 144 144 144 144 144 144 144 144
2009-06 100.0 143 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144
2009-07 100.0 143 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144
2009-08 100.0 143 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144
2009-09 100.0 143 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144
2009-10 99.8 143 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144
2009-11 44.7 143 144 144 144 144 144 144 144 144 144 144 144 144 60 0 0
2009-12 99.8 137 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144
2010-01 100.0 143 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2009-05 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144
2009-06 144 144 144 144 144 144 144 144 144 144 144 144 144 144
2009-07 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144
2009-08 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144
2009-09 144 144 144 144 144 144 144 144 144 144 144 144 144 144
2009-10 144 144 144 144 144 144 144 144 144 144 144 144 144 144 138
2009-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2009-12 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144
2010-01 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144
call: availability(mast=metmast, v.set="all", dir.set="all", subset=NA, digits=1, print=TRUE)
Monthly statistics
set40
2009 2010 mean mean of months
JAN 3.431 3.431 3.431
FEB
MAR
APR
MAY 4.911 4.911 4.911
JUN 4.035 4.035 4.035
JUL 3.776 3.776 3.776
AUG 3.875 3.875 3.875
SEP 4.939 4.939 4.939
OCT 4.597 4.597 4.597
NOV 5.764 5.764 5.764
DEC 5.734 5.734 5.734
mean 4.617 3.431 4.472
mean of months 4.704 3.431 4.563
set30
2009 2010 mean mean of months
JAN 3.315 3.315 3.315
FEB
MAR
APR
MAY 4.711 4.711 4.711
JUN 3.859 3.859 3.859
JUL 3.566 3.566 3.566
AUG 3.703 3.703 3.703
SEP 4.676 4.676 4.676
OCT 4.311 4.311 4.311
NOV 5.571 5.571 5.571
DEC 5.472 5.472 5.472
mean 4.394 3.315 4.262
mean of months 4.483 3.315 4.354
call: month.stats(mast=metmast, set="all", signal="v.avg", fun="mean", subset=NA, digits=3, print=TRUE)
Turbulence intensity
total 0-5 5-10 10-15 15-20 >20
N 0.196 0.252 0.157 0.144 0.145 0.000
NNE 0.242 0.290 0.142 0.000 0.000 0.000
ENE 0.264 0.308 0.140 0.176 0.000 0.000
E 0.296 0.312 0.158 0.000 0.000 0.000
ESE 0.266 0.297 0.135 0.000 0.000 0.000
SSE 0.257 0.275 0.125 0.000 0.000 0.000
S 0.261 0.282 0.145 0.134 0.000 0.000
SSW 0.249 0.320 0.161 0.127 0.113 0.117
WSW 0.232 0.334 0.154 0.129 0.120 0.000
W 0.297 0.345 0.156 0.121 0.000 0.000
WNW 0.393 0.400 0.178 0.000 0.000 0.000
NNW 0.305 0.327 0.189 0.194 0.000 0.000
all 0.244 0.302 0.155 0.134 0.119 0.117
call: turbulence(mast=metmast, turb.set=1, dir.set=1, num.sectors=12, bins=c(0, 5, 10, 15, 20), subset=NA, digits=3, print=TRUE)
6 none-positives found and excluded from calculation
Weibull parameters
A k wind speed frequency
[m/s] [-] [m/s] [%]
N 6.335 2.096 5.611 27.069
NNE 4.391 2.068 3.89 6.047
ENE 4.119 1.778 3.665 3.089
E 3.004 1.527 2.707 1.737
ESE 3.102 1.367 2.838 1.885
SSE 2.772 1.362 2.538 4.586
S 3.36 1.433 3.052 11.639
SSW 5.504 1.358 5.042 15.155
WSW 6.407 1.612 5.74 15.623
W 3.766 1.476 3.406 6.258
WNW 1.713 1.177 1.62 2.46
NNW 2.868 1.246 2.673 4.452
all 4.932 1.449 4.472 100
call: weibull(mast=metmast, v.set=1, dir.set=1, num.sectors=12, subset=NA, digits=3, print=TRUE)
Wind energy content
total 0-5 5-10 10-15 15-20
N 468 195 241 31 1
NNE 35 24 12
ENE 18 13 5
E 5 4 1
ESE 7 6 1
SSE 13 11 2
S 52 44 7 1
SSW 325 190 98 31 7
WSW 387 175 166 38 9
W 37 28 9
WNW 2 2
NNW 17 14 3
all 1366 706 545 101 17
(all values in kWh/m^2/a)
call: energy(wb=wb, rho=1.225, bins=c(0, 5, 10, 15, 20), digits=0, print=TRUE)
Wind profile
alpha wind speed
[-] [m/s]
N 0.249 5.614
NNE 0.243 3.89
ENE 0.175 3.665
E 0.214 2.707
ESE 0.194 2.838
SSE 0.168 2.538
S 0.163 3.052
SSW 0.159 5.042
WSW 0.16 5.74
W 0.228 3.406
WNW 0.331 1.62
NNW 0.237 2.673
all 0.204 4.473
reference height: 40 m
call: windprofile(mast=metmast, v.set=c(1, 2), dir.set=1, num.sectors=12, method="hellman", alpha=NULL, subset=NA, digits=3, print=TRUE)
Annual energy production
wind speed operation total 0-5 5-10 10-15 15-20 >20
[m/s] [h/a] [MWh/a] [MWh/a] [MWh/a] [MWh/a] [MWh/a] [MWh/a]
N 7.191 2371 4824 91 1840 2423 447 23
NNE 4.986 530 422 32 290 97 2
ENE 4.697 271 206 16 128 59 3
E 3.469 152 56 8 37 10
ESE 3.637 165 81 8 47 23 2
SSE 3.253 402 144 20 89 33 2
S 3.911 1020 580 53 333 175 18 1
SSW 6.462 1328 2376 52 677 1042 450 154
WSW 7.357 1369 3020 51 836 1408 575 150
W 4.366 548 406 28 217 141 18 1
WNW 2.076 215 25 7 15 3
NNW 3.425 390 183 18 99 57 8 1
total 5.732 8760 12323 384 4608 5471 1525 330
capacity factor: 0.188
call: aep(profile=pf, pc=pc, hub.h=135, rho=1.225, avail=1, bins=c(0, 5, 10, 15, 20), sectoral=FALSE, digits=c(3, 0, 0, 3), print=TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.