| bage-package | R Documentation |
Bayesian estimation and forecasting of age-specific rates. Estimation uses TMB, and is fast.
Specify model using mod_pois()
Fit model using fit()
Extract results using augment()
Check model using replicate_data()
Specify model
mod_pois() Specify a Poisson model
mod_binom() Specify a binomial model
mod_norm() Specify a normal model
set_prior() Specify prior for main effect or interaction
priors Overview of priors for main effects or interactions
set_disp() Specify prior for dispersion/variance
set_covariates() Add covariates to model
datamods Overview of data models (measurement error models)
confidential Overview of confidentialization models
Fit model
fit() Derive posterior distribution
Extract results
augment() Original data, plus observation-level estimates
components() Hyper-parameters
dispersion() Dispersion parameter (a type of hyper-parameter)
tidy() One-line summary
set_n_draw() Specify number of prior or posterior draws
Forecast
forecast() Use model to obtain estimates for future periods
Check model
replicate_data() Compare real and simulated data
report_sim() Simulation study of model
datasets Overview of datasets
svds Overview of scaled SVDs
Maintainer: John Bryant john@bayesiandemography.com
Authors:
Junni Zhang junnizhang@163.com
Other contributors:
Bayesian Demography Limited [copyright holder]
Useful links:
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.