View source: R/bage_mod-functions.R
| set_disp | R Documentation |
Specify the mean of prior for the dispersion parameter (in Poisson and binomial models) or the standard deviation parameter (in normal models.)
set_disp(mod, mean = 1)
mod |
An object of class |
mean |
Mean value for the exponential prior.
In Poisson and binomial models, can be set to 0.
Default is |
The dispersion or mean parameter has an exponential
distribution with mean \mu,
p(\xi) = \frac{1}{\mu}\exp\left(\frac{-\xi}{\mu}\right).
By default \mu equals 1.
In Poisson and binomial models,
mean can be set to 0, implying
that the dispersion term is also 0.
In normal models, mean must be non-negative.
If set_disp() is applied to
a fitted model, set_disp() unfits
the model, deleting existing estimates.
A bage_mod object
mod_pois(), mod_binom(), mod_norm() Specify a
model for rates, probabilities, or means
set_prior() Specify prior for a term
set_n_draw() Specify the number of draws
is_fitted() Test whether a model is fitted
mod <- mod_pois(injuries ~ age:sex + ethnicity + year,
data = nzl_injuries,
exposure = popn)
mod
mod |> set_disp(mean = 0.1)
mod |> set_disp(mean = 0)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.