View source: R/bage_mod-functions.R
set_disp | R Documentation |
Specify the mean of prior for the dispersion parameter (in Poisson and binomial models) or the standard deviation parameter (in normal models.)
set_disp(mod, mean)
mod |
An object of class |
mean |
Mean value for the exponential prior. In Poisson and binomial models, can be set to 0. |
The dispersion or mean parameter has an exponential
distribution with mean \mu
,
p(\xi) = \frac{1}{\mu}\exp\left(\frac{-\xi}{\mu}\right).
In Poisson and binomial models,
mean
can be set to 0
, implying
that the dispersion term is also 0
.
In normal models, mean
must be non-negative.
If set_disp()
is applied to
a fitted model, it 'unfits'
the model, deleting existing estimates.
A bage_mod
object
mod_pois()
, mod_binom()
, mod_norm()
Specify a
model for rates, probabilities, or means
set_prior()
Specify prior for a term
set_n_draw()
Specify the number of draws
is_fitted()
Test whether a model is fitted
mod <- mod_pois(injuries ~ age:sex + ethnicity + year,
data = nzl_injuries,
exposure = popn)
mod
mod |> set_disp(mean = 0.1)
mod |> set_disp(mean = 0)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.