Description Usage Arguments Details References See Also Examples
View source: R/parseCommandArgs.R
parseCommandArgs
allows for command line arguments to be passed into R. Arguments may be of the form of simple R objects. This makes running the same R code on multiple different options easy, and possible to run in parallel on a single machine or on a cluster.
parseCommandArgsDF
returns a dataframe with all of the values that were set when the code was executed.
1 | parseCommandArgs(evaluate=TRUE)
|
evaluate |
If TRUE, then the command-line arguments are assigned to the current namespace, over-riding any default values that may have already been set in software. |
Returns a list of the command-line arguments that were set.
See the example below for a good example of how to use this function, and how to run things in parallel with it.
Thomas J. Hoffmann (2011). Passing in Command Line Arguments and Parallel Cluster/Multicore Batching in R with batch. Journal of Statistical Software, Code Snippets, 39(1), 1-11. URL http://www.jstatsoft.org/v39/c01/.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | ## Not run:
## mainSim.R
## Put the following code in the file 'mainSim.R'.
##
## Try this out by running:
## R --vanilla < mainSim.R > mainSim.Rout1013
## R --vanilla --args seed 1014 bbeta 0 < mainSim.R > mainSim.Rout1014
## R --vanilla --args seed 1015 bbeta "c(10,20)" < mainSim.R > mainSim.Rout1015
library(batch)
## Set values of some parameters
seed <- 1013 ## default value
bbeta <- 5 ## default value, note 'beta' is an R function, so we can't use that
## Overwrite the values of 'seed' and 'bbeta', e.g., if they have been
## passed in from the command prompt.
parseCommandArgs()
## Will disply the default values on the first run,
## but bbeta=1014 and bbeta=0 on the second run.
print(seed)
print(bbeta)
## ... your simualtion code
## Write out your results to a csv file
write.csv(data.frame(seed=seed, bbeta=paste(bbeta,collapse="~")),
paste("res",seed,".csv",sep=""), row.names=FALSE)
## R.miSniam
## End(Not run)
## Not run:
## run_mainSim_parallel.R
## Put the following code in 'run_mainSim_parallel.R'
##
## Selects a variety of parameter combinations to run
## mainSim.R in parallel on a cluster.
##
## First see the commands that would be run (to make sure they are correct) with
## R --vanilla --args RUN 0 < run_mainSim_parallel.R
## Then run the commands with
## R --vanilla < run_mainSim_parallel.R
## or
## R --vanilla --args RUN 1 < run_mainSim_parallel.R
## These will all default to run locally.
## To run on a mosix cluster, run with
## R --vanilla --args RUN 1 RBATCH mosix < run_mainSim_parallel.R
## And on a LSF cluster, run with
## R --vanilla --args RUN 1 RBATCH lsf < run_mainSim_parallel.R
library(batch)
parseCommandArgs() ## for overwriting default values; here, 'run'
## Choose a high enough seed for later for pasting the results together
## (1,...,9,10) sorts not the way you want, for example.
seed <- 1000
for(i in 1:10)
seed <- rbatch("mainSim.R", seed=seed, bbeta=i)
## Only for local (but it does not hurt to run in other situations,
## so suggested in all cases).
## This actually runs all the commands when run on the local system.
rbatch.local.run()
## R.lellarap_miSniam_nur
## End(Not run)
## Not run:
## paste_mainSim_results.R
## Put the following code in paste_mainSim_results.R (or just
## type them in), and run
## R --vanilla < paste_mainSim_results.R
##
## Pastes all of the csv files created in 'run_mainSim_parallel'
## together.
library(batch)
mergeCsv()
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.