Nothing
#' @title Bayesian Mixture Modelling for Joint Model-Based
#' Clustering/Classification and Batch Correction
#' @description Semi-supervised and unsupervised Bayesian mixture models that
#' simultaneously infer the cluster/class structure and a batch correction.
#' Densities available are the multivariate normal and the multivariate t.
#' The model sampler is implemented in C++. This package is aimed at analysis of
#' low-dimensional data generated across several batches. See
#' (Coleman et al. (2022))[https://doi.org/10.1101/2022.01.14.476352] for
#' details of the model.
#' @name batchmix-package
#' @aliases batchmix
#' @docType package
#' @author Stephen Coleman <stcolema@tcd.ie>, Paul D.W. Kirk, Chris Wallace
#' @keywords package
#'
#' @importFrom ggplot2 aes_string facet_grid facet_wrap geom_line geom_point
#' ggplot label_both labeller labs
#' @importFrom stats cutree as.dist hclust median rbeta rchisq rnorm
#' @importFrom tidyr contains pivot_longer
#' @importFrom Rcpp evalCpp sourceCpp
#' @useDynLib batchmix
#' @examples
#'
#' # Data in a matrix format
#' X <- matrix(c(rnorm(100, 0, 1), rnorm(100, 3, 1)), ncol = 2, byrow = TRUE)
#'
#' # Initial labelling
#' labels <- c(
#' rep(1, 10),
#' sample(c(1, 2), size = 40, replace = TRUE),
#' rep(2, 10),
#' sample(c(1, 2), size = 40, replace = TRUE)
#' )
#'
#' # Which labels are observed
#' fixed <- c(rep(1, 10), rep(0, 40), rep(1, 10), rep(0, 40))
#'
#' # Batch
#' batch_vec <- sample(seq(1, 5), replace = TRUE, size = 100)
#'
#' # Sampling parameters
#' R <- 1000
#' thin <- 50
#'
#' # Classification
#' samples <- runBatchMix(X,
#' R,
#' thin,
#' batch_vec,
#' "MVN",
#' initial_labels = labels,
#' fixed = fixed,
#' )
#'
#' # Clustering
#' samples <- runBatchMix(X, R, thin, batch_vec, "MVT")
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.