Nothing
#!/usr/bin/Rscript
#' @title Predict class
#' @description Predicts a final class for each item given a matrix of
#' allocation probabilities.
#' @param prob Output from the ``calcAllocProb`` function, a N x K matrix of
#' allocation probabilities.
#' @return An N vector of class allocations.
#' @export
#' @examples
#'
#' # Data in a matrix format
#' X <- matrix(c(rnorm(100, 0, 1), rnorm(100, 3, 1)), ncol = 2, byrow = TRUE)
#'
#' # Initial labelling
#' labels <- c(
#' rep(1, 10),
#' sample(c(1, 2), size = 40, replace = TRUE),
#' rep(2, 10),
#' sample(c(1, 2), size = 40, replace = TRUE)
#' )
#'
#' fixed <- c(rep(1, 10), rep(0, 40), rep(1, 10), rep(0, 40))
#'
#' # Batch
#' batch_vec <- sample(seq(1, 5), replace = TRUE, size = 100)
#'
#' # Sampling parameters
#' R <- 1000
#' thin <- 50
#'
#' # MCMC samples and BIC vector
#' samples <- batchSemiSupervisedMixtureModel(
#' X,
#' R,
#' thin,
#' labels,
#' fixed,
#' batch_vec,
#' "MVN"
#' )
#'
#' # Burn in
#' burn <- 200
#' eff_burn <- burn / thin
#'
#' # Probability across classes
#' probs <- calcAllocProb(samples, burn = burn)
#'
#' # Predict the class
#' preds <- predictClass(probs)
#'
predictClass <- function(prob) {
pred_cl <- apply(prob, 1, which.max)
pred_cl
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.