Nothing
## ---- SETTINGS-knitr, include=FALSE-------------------------------------------
library(bayesDP)
stopifnot(require(knitr))
opts_chunk$set(
#comment = NA,
#message = FALSE,
#warning = FALSE,
#eval = if (isTRUE(exists("params"))) params$EVAL else FALSE,
dev = "png",
dpi = 150,
fig.asp = 0.8,
fig.width = 5,
out.width = "60%",
fig.align = "center"
)
# Run two models to document the discount function plots
set.seed(42)
fit01 <- bdpbinomial(y_t=10, N_t=500, y0_t=25, N0_t=250, method="fixed")
fit02 <- bdpbinomial(y_t=10, N_t=500, y0_t=10, N0_t=250, method="fixed",
discount_function="weibull")
fit_scaledweibull <- bdpbinomial(y_t=10, N_t=500, y0_t=25, N0_t=250,
discount_function="scaledweibull",
method="fixed")
fit_identity <- bdpbinomial(y_t=10, N_t=500, y0_t=10, N0_t=250,
method="fixed")
## ---- echo=FALSE--------------------------------------------------------------
df2 <- plot(fit_identity, type="discount", print=FALSE)
df2 + ggtitle("Discount function plot", "Identity")
## ---- echo=FALSE--------------------------------------------------------------
df1 <- plot(fit02, type="discount", print=FALSE)
df1 + ggtitle("Discount function plot", "Weibull distribution with shape=3 and scale=0.135")
## -----------------------------------------------------------------------------
p1 <- plot(fit02, type="discount", print=FALSE)
p1 + ggtitle("Discount Function Plot :-)")
## -----------------------------------------------------------------------------
set.seed(42)
# Simulate survival times for current and historical data
surv_1arm <- data.frame(status = 1,
time = rexp(10, rate=1/10))
# Simulate survival times for historical data
surv_1arm0 <- data.frame(status = 1,
time = rexp(50, rate=1/11))
## -----------------------------------------------------------------------------
set.seed(42)
fit1 <- bdpsurvival(Surv(time, status) ~ 1,
data = surv_1arm,
data0 = surv_1arm0,
surv_time = 5,
method = "fixed")
print(fit1)
## ---- include=FALSE-----------------------------------------------------------
survival_time_posterior <- ppexp(5,
fit1$posterior_treatment$posterior_hazard,
cuts=c(0,fit1$args1$breaks))
surv_augmented1 <- round(1-median(survival_time_posterior), 4)
CI95_augmented1 <- round(1-quantile(survival_time_posterior, prob=c(0.975, 0.025)), 4)
## -----------------------------------------------------------------------------
summary(fit1)
## -----------------------------------------------------------------------------
set.seed(42)
fit1a <- bdpsurvival(Surv(time, status) ~ 1,
data = surv_1arm,
data0 = surv_1arm0,
surv_time = 5,
alpha_max = 1,
fix_alpha = TRUE,
method = "fixed")
print(fit1a)
## -----------------------------------------------------------------------------
survival_time_posterior <- ppexp(5,
fit1a$posterior_treatment$posterior_hazard,
cuts=c(0,fit1a$args1$breaks))
surv_augmented <- 1-median(survival_time_posterior)
CI95_augmented <- 1-quantile(survival_time_posterior, prob=c(0.975, 0.025))
## -----------------------------------------------------------------------------
plot(fit1, type="survival")
plot(fit1, type="discount")
## -----------------------------------------------------------------------------
set.seed(42)
# Simulate survival times for treatment data
time_current_trt <- rexp(10, rate=1/10)
time_historical_trt <- rexp(50, rate=1/11)
# Simulate survival times for control data
time_current_cntrl <- rexp(10, rate=1/12)
time_historical_cntrl <- rexp(50, rate=1/12)
# Combine simulated data into data frames
surv_2arm <- data.frame(treatment = c(rep(1,10),rep(0,10)),
time = c(time_current_trt, time_current_cntrl),
status = 1)
surv_2arm0 <- data.frame(treatment = c(rep(1,50),rep(0,50)),
time = c(time_historical_trt, time_historical_cntrl),
status = 1)
## -----------------------------------------------------------------------------
set.seed(42)
fit2 <- bdpsurvival(Surv(time, status) ~ treatment,
data = surv_2arm,
data0 = surv_2arm0,
method = "fixed")
print(fit2)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.