Nothing
## ---- echo = FALSE, include = TRUE--------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
options(rmarkdown.html_vignette.check_title = FALSE)
## ---- echo = FALSE, include = FALSE, warning = FALSE, results = "hide"--------
df_assurvals <- read.csv("Tables/vig2_assurvals.csv", header = TRUE)
df_assurvals_long <- read.csv("Tables/vig2_assurvals_long.csv", header = TRUE)
df_assurvals_unbalanced <- read.csv("Tables/vig2_assurvals_unbalanced.csv", header = TRUE)
df_assurvals_unbal_costeff <- read.csv("Tables/vig2_assurvals_unbal_costeff.csv", header = TRUE)
## ---- echo = TRUE, include = TRUE, warning = FALSE, results = "hide"----------
library(bayesassurance)
## ---- echo = TRUE, include = TRUE, eval = FALSE-------------------------------
# n <- seq(100, 250, 5)
#
# set.seed(10)
# assur_vals <- bayes_sim(n, p = 1, u = 1, C = 0.15, Xn = NULL,
# Vbeta_d = 1e-8, Vbeta_a_inv = 0,
# Vn = NULL, sigsq = 0.265,
# mu_beta_d = 0.25, mu_beta_a = 0,
# alt = "greater", alpha = 0.05, mc_iter = 10000)
## ---- echo = TRUE, include = TRUE, warning = FALSE, results=FALSE, eval = FALSE----
# head(assur_vals$assurance_table)
## ---- echo = FALSE, include = TRUE, warning = FALSE---------------------------
library(knitr)
tab <- df_assurvals
kable(head(tab))
## ---- echo = TRUE, include = TRUE, warning = FALSE, eval = FALSE--------------
# assur_vals$assurance_plot
## ---- echo = FALSE, out.width = "50%"-----------------------------------------
library(knitr)
knitr::include_graphics("Images/vig2_assurtab_plot.png")
## ---- echo = TRUE, include = TRUE, results = 'hide', eval = FALSE-------------
# n <- seq(100, 250, 5)
# y1 <- bayesassurance::pwr_freq(n = n, sigsq = 0.265, alt = "greater", alpha = 0.05,
# theta_0 = 0.15, theta_1 = 0.25)
# y2 <- assur_vals
#
# library(ggplot2)
# p1 <- ggplot2::ggplot(y1$pwr_table, alpha = 0.5,
# aes(x = n, y = Power, color="Power")) +
# geom_line(lwd=1.2) + geom_point(data = y2$assurance_table, alpha = 0.5,
# aes(y = y2$assurance_table$Assurance, color="Assurance"),lwd=1.2) +
# ggtitle("Power Curve and Assurance Values Overlayed") + xlab("Sample Size n") +
# ylab("Power/Assurance")
#
# p1
## ---- echo = FALSE, out.width = "50%"-----------------------------------------
library(knitr)
knitr::include_graphics("Images/bayes_sim_overlay.png")
## ---- echo = TRUE, include = TRUE, eval = FALSE, results = "hide"-------------
# n = 285
# p = 4
# K = 20000 # threshold unit cost
# C <- 0
# u <- as.matrix(c(-K, 1, K, -1))
# sigsq <- 4.04^2
#
# ## Assign correlation matrices to analysis and design stage priors
# Vbeta_a_inv <- matrix(rep(0, p^2), nrow = p, ncol = p)
#
# Vbeta_d <- (1 / sigsq) * matrix(c(4, 0, 3, 0, 0, 10^7, 0, 0, 3, 0, 4, 0, 0, 0, 0, 10^7),
# nrow = 4, ncol = 4)
#
# tau1 <- tau2 <- 8700
# sig <- sqrt(sigsq)
# Vn <- matrix(0, nrow = n*p, ncol = n*p)
# Vn[1:n, 1:n] <- diag(n)
# Vn[(2*n - (n-1)):(2*n), (2*n - (n-1)):(2*n)] <- (tau1 / sig)^2 * diag(n)
# Vn[(3*n - (n-1)):(3*n), (3*n - (n-1)):(3*n)] <- diag(n)
# Vn[(4*n - (n-1)):(4*n), (4*n - (n-1)):(4*n)] <- (tau2 / sig)^2 * diag(n)
#
# ## Assign mean parameters to analysis and design stage priors
# mu_beta_d <- as.matrix(c(5, 6000, 6.5, 7200))
# mu_beta_a <- as.matrix(rep(0, p))
#
# set.seed(10)
# assur_vals <- bayesassurance::bayes_sim(n = 285, p = 4, u = as.matrix(c(-K, 1, K, -1)),
# C = 0, Xn = NULL,
# Vbeta_d = Vbeta_d, Vbeta_a_inv = Vbeta_a_inv,
# Vn = Vn, sigsq = 4.04^2,
# mu_beta_d = as.matrix(c(5, 6000, 6.5, 7200)),
# mu_beta_a = as.matrix(rep(0, p)),
# alt = "greater", alpha = 0.05, mc_iter = 10000)
#
# assur_vals$assur_val
## ---- echo = FALSE, include = TRUE--------------------------------------------
print("Assurance: 0.724")
## ---- echo = TRUE, include = TRUE, message = FALSE, eval = FALSE--------------
# n <- seq(10, 100, 5)
# ids <- c(1,2)
# sigsq <- 100
# Vbeta_a_inv <- matrix(rep(0, 16), nrow = 4, ncol = 4)
# Vbeta_d <- (1 / sigsq) * matrix(c(4, 0, 3, 0, 0, 6, 0, 0, 3, 0, 4, 0, 0, 0, 0, 6),
# nrow = 4, ncol = 4)
#
# assur_out <- bayes_sim(n = n, p = NULL, u = c(1, -1, 1, -1), C = 0, Xn = NULL,
# Vbeta_d = Vbeta_d, Vbeta_a_inv = Vbeta_a_inv,
# Vn = NULL, sigsq = 100,
# mu_beta_d = as.matrix(c(5, 6.5, 62, 84)),
# mu_beta_a = as.matrix(rep(0, 4)), mc_iter = 5000,
# alt = "two.sided", alpha = 0.05, longitudinal = TRUE, ids = ids,
# from = 10, to = 120)
#
## ---- echo = TRUE, include = TRUE, eval = FALSE, results = "hide"-------------
# head(assur_out$assurance_table)
## ---- echo = FALSE, include = TRUE--------------------------------------------
library(knitr)
kable(head(df_assurvals_long))
## ---- echo = TRUE, include = TRUE, eval = FALSE, results = "hide"-------------
# assur_out$assurance_plot
## ---- echo = FALSE, out.width = "50%"-----------------------------------------
library(knitr)
knitr::include_graphics("Images/bayes_sim_long.png")
## ---- echo = TRUE, include = TRUE, message = FALSE, eval = FALSE--------------
# n1 <- seq(20, 75, 5)
# n2 <- seq(50, 160, 10)
#
# set.seed(100)
# assur_out <- bayes_sim_unbalanced(n1 = n1, n2 = n2, repeats = 1, u = c(1, -1),
# C = 0, Xn = NULL, Vbeta_d = matrix(c(50, 0, 0, 10),nrow = 2, ncol = 2),
# Vbeta_a_inv = matrix(rep(0, 4), nrow = 2, ncol = 2),
# Vn = NULL, sigsq = 100, mu_beta_d = c(1.17, 1.25),
# mu_beta_a = c(0, 0), alt = "two.sided", alpha = 0.05, mc_iter = 5000,
# surface_plot = TRUE)
## ---- echo = TRUE, include = TRUE, message = FALSE, results = "hide", eval = FALSE----
# ## Outputs
# head(assur_out$assurance_table)
## ---- echo = FALSE, include = TRUE--------------------------------------------
## Outputs
library(knitr)
kable(head(df_assurvals_unbalanced))
## ---- echo = TRUE, include = TRUE, message = FALSE, eval = FALSE, results = "hide"----
# assur_out$contourplot
## ---- echo = FALSE, out.width = "50%"-----------------------------------------
library(knitr)
knitr::include_graphics("Images/vig2_assur_contourplot.png")
## ---- echo = TRUE, include = TRUE, message = FALSE, eval = FALSE--------------
# n1 <- c(4, 5, 15, 25, 30, 100, 200)
# n2 <- c(8, 10, 20, 40, 50, 200, 250)
#
# mu_beta_d <- as.matrix(c(5, 6000, 6.5, 7200))
# mu_beta_a <- as.matrix(rep(0, 4))
# K = 20000 # threshold unit cost
# C <- 0
# u <- as.matrix(c(-K, 1, K, -1))
# sigsq <- 4.04^2
# Vbeta_a_inv <- matrix(rep(0, 16), nrow = 4, ncol = 4)
# Vbeta_d <- (1 / sigsq) * matrix(c(4, 0, 3, 0, 0, 10^7, 0, 0, 3, 0, 4, 0, 0, 0, 0, 10^7),
# nrow = 4, ncol = 4)
#
# set.seed(12)
# assur_out <- bayes_sim_unbalanced(n1 = n1, n2 = n2, repeats = 2, u = as.matrix(c(-K, 1, K, -1)),
# C = 0, Xn = NULL, Vbeta_d = Vbeta_d,
# Vbeta_a_inv = Vbeta_a_inv,
# Vn = NULL, sigsq = 4.04^2,
# mu_beta_d = as.matrix(c(5, 6000, 6.5, 7200)),
# mu_beta_a = as.matrix(rep(0, 4)), alt = "greater",
# alpha = 0.05, mc_iter = 5000, surface_plot = TRUE)
#
#
## ---- echo = TRUE, include = TRUE, eval = FALSE, results = "hide"-------------
# head(assur_out$assurance_table)
## ---- echo = FALSE, include = TRUE--------------------------------------------
## Outputs
library(knitr)
kable(head(df_assurvals_unbal_costeff))
## ---- echo = TRUE, include = TRUE, eval = FALSE, results = "hide"-------------
# assur_out$contourplot
## ---- echo = FALSE, out.width = "50%"-----------------------------------------
library(knitr)
knitr::include_graphics("Images/assur_contourplot_costeff.png")
## ---- echo = TRUE, include = TRUE, eval = FALSE-------------------------------
# n <- seq(100, 250, 5)
# assur_vals <- bayesassurance::bayes_sim(n, p = 1, u = 1, C = 0.15, Xn = NULL,
# Vbeta_d = 1e-8, Vbeta_a_inv = 0,
# Vn = NULL, sigsq = 0.265,
# mu_beta_d = 0.25, mu_beta_a = 0,
# alpha = 0.05, mc_iter = 10000)
#
#
# assur_vals <- bayesassurance::bayes_sim_unknownvar(n, p = 1, u = 1,
# C = 0.15, R = 150, Xn = NULL, Vn = NULL,
# Vbeta_d = 1e-8, Vbeta_a_inv = 0,
# mu_beta_d = 0.25, mu_beta_a = 0,
# a_sig_a = 0.1, b_sig_a = 0.1,
# a_sig_d = 0.1, b_sig_d = 0.1,
# alpha = 0.05, mc_iter = 5000)
#
## ---- echo = TRUE, include = TRUE---------------------------------------------
n <- c(1,2,3,4)
bayesassurance::gen_Xn(n)
## ---- echo = TRUE, include = TRUE---------------------------------------------
n <- 3
p <- 4
bayesassurance::gen_Xn(rep(n, p))
## ---- echo = TRUE, include = TRUE---------------------------------------------
ids <- c(1,2,3,4)
gen_Xn_longitudinal(ids, from = 1, to = 10, num_repeated_measures = 4)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.