Holt | R Documentation |
Constructor of the ets("A","A","Z")
object for Bayesian estimation in Stan.
Holt(ts, damped = FALSE, xreg = NULL, genT = FALSE, series.name = NULL)
ts |
a numeric or ts object with the univariate time series. |
damped |
a boolean value to specify a damped trend local level model. By
default, |
xreg |
Optionally, a numerical matrix of external regressors, which must have the same number of rows as ts. It should not be a data frame. |
genT |
a boolean value to specify for a generalized t-student SSM model. |
series.name |
an optional string vector with the time series names. |
The genT = TRUE
option generates a t-student innovations SSM model. For
more references check Ardia (2010); or Fonseca, et. al (2019).
The default priors used in a ssm( )
model are:
level ~ normal(0,0.5)
trend ~ normal(0,0.5)
damped~ normal(0,0.5)
sigma0 ~ t-student(0,1,7)
level1 ~ normal(0,1)
trend1 ~ normal(0,1)
dfv ~ gamma(2,0.1)
breg ~ t-student(0,2.5,6)
For changing the default prior use the function set_prior()
.
The function returns a list with the data for running stan()
f
unction of rstan package.
Asael Alonzo Matamoros.
Fonseca, T. and Cequeira, V. and Migon, H. and Torres, C. (2019). The effects of
degrees of freedom estimation in the Asymmetric GARCH model with Student-t
Innovations. arXiv doi: arXiv: 1910.01398
.
Sarima
, auto.arima
, set_prior
, and garch
.
mod1 = Holt(ipc)
# Declaring a Holt damped trend model for the ipc data.
mod2 = Holt(ipc,damped = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.