Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(message = FALSE, warning = FALSE)
## ----setup, include = FALSE---------------------------------------------------
library(bayesmlogit)
## ----echo=TRUE, eval=FALSE----------------------------------------------------
# devtools::install_github("Xuezhixing-Zhang/bayesmlogit")
## -----------------------------------------------------------------------------
#In this example, we generate 250 observations and 6 states (including death). Based on these observations, we apply the `CreateTrans()` function and generate the transitions.
#Create subject IDs for each observation. In this example, we have 50 subjects and 250 observations in total.
ID <- rep(1:50, each = 5)
#Create Age variable for each observation.
Age <- rep(31:35, times = 50)
#Create the current state for each observation. Without considering the end state "Death", we assume there are five other possible states.
State <- sample(1:5,size=250,replace=TRUE)
#Create the indicator of death. All subjects in this example are presumed to have died at the last observation.
Death <- rep(c(0,0,0,0,1),times=50)
Example <- data.frame(ID,Age,State,Death)
#Use `CreateTrans()` to create transitions of each observation. Here we have six states in total: death and the other five possible states.
Example$trans <- CreateTrans(Example$ID,Example$Age,
Example$State,Example$Death,states=6)
#The transition for the first observation of each subject is NA because we cannot observe their previous states.
head(Example,10)
## ----eval = FALSE-------------------------------------------------------------
# data <- lifedata
# y <- data[,1]
# X <- data[,-1]
#
# # This example will take about 30 mins.
# out <- bayesmlogit(y, X ,samp=1000, burn=500, step.width = 5, verbose=10)
## ----eval = FALSE-------------------------------------------------------------
# trans <- out$outwstepwidth
# mlifeTable(y,X,trans =trans,
# groupby = c("male","black","hispanic"),
# vars = "mar",
# startages=50,
# age.gap=1,
# states=3,
# nums =200,
# file_path=".")
#
## ----echo = FALSE-------------------------------------------------------------
lifetable <- data.frame(V1 = c(12.26391,12.98282,11.97415,11.36613,10.32153),
V2 = c(12.37167, 13.26774, 13.92443, 13.62579, 13.61575),
V3 = c(35.37205, 33.85567, 34.11296, 35.02107, 36.06585))
head(lifetable)
## ----eval = FALSE-------------------------------------------------------------
# #An example for generating plots with mlifeTable().
# mlifeTable(y,X,trans =trans,
# groupby = c("male","black","hispanic"),
# vars = "mar",
# states=3,
# startages=50,
# age.gap=1,
# nums = 200,
# file_path=".",
# mlifeTable_plot = T,
# cred = 0.84)
#
# #An example for generating plots with mlifeTable_plot():
# mlifeTable_plot(X=lifedata[,-1],state.include = 0,
# groupby = c("male","black","hispanic"),
# cred = 0.84,
# states = 3,
# file_path = ".")
#
## ----echo = FALSE-------------------------------------------------------------
totallife <- data.frame(mean = c(25.594167,20.98344555, 17.5083547, 21.7699725, 25.7521784, 19.5448111),
left.bound = c(23.8903564, 19.7064424, 15.7686292, 19.9670376, 21.7483432, 16.220418),
right.bound = c(27.237894, 22.3996896, 19.3485968, 23.5050464, 29.8415952, 23.2624656),
subgroup = c("group000", "group100", "group110", "group010", "group001", "group101"))
totallife
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.